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We have obtained canonical partition function  

                                         Q (N,V,β) = ∑j e
-βEj(N,V) 

 Ej is function of number particles and volume where j is number of states. We have also 

obtained probability of j-th state,  

                                           pj(N,V, β) =  
ⅇ

−βEj(N,V)

Q(N,V,β)
 

Since we have obtained partition function as well as the probability, now we can calculate all 

the thermodynamic quantities like average energy (<E>). . 

 Average Energy <E> = ∑j pj (N,V,β) Ej (N,V) 

If you remember that probability of any variable x = ∑j xjpj , we already discussed this which 

is very similar to this.  

Now if we substitute the value of probability pj, we will obtain, 

                             <E> = 
∑jⅇ

−βEj(N,V)
Ej (N,V)

Q(N,V,β)
     ………………..(1) 

 This is the expression we obtain for average energy. Now, if we closely look at the expression 

for partition function as well as the expression 1, we see that in the denominator we have Q 

and in the numerator we have ∑jⅇ−βEj(N,V)Ej (N, V) , it says that we need to take log of Q first 

and then we need to differentiate Q with respect to beta then what we get is like very similar to 

expression 1 let us see 



 

So we have Q, now we will take lnQ and differentiate lnQ with respect to β keeping number of 

particles and volume constant,  

                             (
∂ ln Q(N,V,β)

∂β
)

N,V
=  

∑ ⅇ
−βEj(d,v)

× (−Ej (N,V))
j

∑jⅇ
−βEj(N,V)  …………….(2) 

Now, if we compare expression 1 and expression 2, we get  

                                                  <E> = - (
∂ ln Q(N,V,β)

∂β
)

N,V
 

So this is the expression for average energy, if you know the partition function you can easily 

calculate average energy and this average energy is nothing but the internal energy that we 

have used in classical thermodynamics. 

Now, we will prove also that β is 1/KBT, where KB is Boltzman constantant and  T is the 

absolute temperature. So in terms of temperature we can write 

                                                <E> = kBT2 (
∂ ln Q(N,V,β)

∂T
)

N,V
 

 Now we will calculate average pressure. Since, we are dealing with canonical partition 

function, in canonical partition function number of particles, volume and temperature fixed, so 

pressure can fluctuate, so we will calculate average pressure. To do this, we will start with the 

expression for average energy. Now, 

                                     <E> = U = ∑j pj (N,V,β) Ej (N,V) 

So we can further proceed like this  

                                  dU, = ∑j pjdEj (N,V,) + ∑j Ej (N,V) dpj       

then this above expression can be reduced further to 

                                dU = ∑j pj  (
∂Ej

∂v
)

N
ⅆv + ∑j Ej (N,V) dpj       ……………(3) 

 From thermodynamics, we know, 

                                    dU = ∂w + ∂q 



and if the process is a reversible, one can write  

                                   dU = δwrev + δqrev 

we can further proceed and write  

                                   dU = -PdV + δqrev  ……………………..(4) 

Now if you compare the coefficients of dV of equation 3 and 4, what we obtained  

                                            pj =  (
∂Ej

∂V
)

N
 ……………….(5) 

This is because average pressure we can also write like <P> = = ∑j pj (N,V,β) Pj (N,V) 

Now we know the expression for probability. If we substitute the expression for probability                           

here we get              <P> = = 
 ∑ⅇ

−βEj  (−(
∂Ej

∂v
)

N
)

Q
 

 We know           

                                 Q (N,V,β) = ∑j e
-βEj(N,V)  

we will take log of Q and we will differentiate ln Q with respect to V keeping N and β consant. 

                                lnQ (N,V,β) = ln (∑j e
-βEj(N,V)) 

.                                <P> = kBT (
∂ ln Q

∂V
)

N,β
 

So, this is the expression for average pressure.  

So far we have assumed that β = 1/kBT, we will prove it now.  

We will start with average pressure. We just discussed 

                                 <E> = ∑j pj  Ej = 
∑j Ej (N,V) ⅇ

−βEj(N,V)

∑j ⅇ
−βEj(N,V)       

Now, we will differentiate average energy with respect to volume keeping N and beta constant 

We will get, 



        (
∂<E>j

∂V
)

N,β
  = 

∑j (
∂Ej

∂v
)

N
 ⅇ

−βEj(N,V)

∑j ⅇ
−βEj(N,V)  +  

∑j Ej (N,V)ⅇ
−βEj(N,V)

×(−β)×(
∂Ej

∂v
)

N

∑j ⅇ
−βEj(N,V)   

                                 −
∑j Ej (N,V)ⅇ

−βEj(N,V)
×∑j ⅇ

−βEj(N,V)
×(−β)×(

∂Ej

∂v
)

N

(∑j ⅇ
−βEj(N,V)

)2
……….(6) 

We can further simplify this one. 

Now, if we look at the first term what do we get?  The first term gives you minus of average 

pressure. So the first term, gives us average pressure. Now, if we see the second term, we have 

plus beta. We can take beta out and then if we take the minus sign in minus (
∂Ej

∂V
), we get Pj 

that is pressure. So we get average of pressure times energy from second term. 

Now, if we look at the third term, the first term gives us the average energy. Now, if we split 

the denominator into two different ∑j ⅇ−βEj term,  the first term gives us the average energy 

minus E average and the second term gives us pressure. Then we have one beta term also.  

            (
∂<E>j

∂V
)

N,β
=  −< P >  + β < PE >  − β < E >< P> …………..(7) 

So this is the expression we have got, if we differentiate average energy with respect to volume. 

Now for those who did not understand how we arrived at this expression, I will just show those 

things there. Now we will go back and check the expression of this.  

So in equation 6, the first term in the right hand side we have  

∑j (
∂Ej

∂v
)

N
 ⅇ

−βEj(N,V)

∑j ⅇ
−βEj(N,V) .  

ⅇ
−βEj(N,V)

∑j ⅇ
−βEj(N,V) this term gives uspj, probability. So the first term reduces to 

∑j (
∂Ej

∂v
) pj(N, V, β) and this is nothing but minus of average pressure. So this is the first term 

in the right hand side of equation 1. 

                      

∑j (
∂Ej

∂v
)

N
 ⅇ

−βEj(N,V)

∑j ⅇ
−βEj(N,V)  =  ∑j (

∂Ej

∂v
) pj(N, V, β) =  −< P >  

 



In the second the term of expression 6, we have 

∑j Ej (N,V)ⅇ
−βEj(N,V)

×(−β)×(
∂Ej

∂v
)

N

∑j ⅇ
−βEj(N,V)  . 

Now, if we further reduce this one and write this as 

β∑j Ej ×(−(
∂Ej

∂v
)

N
)ⅇ

−βEj

∑j ⅇ
−βEj(N,V)  . So 

ⅇ
−βEj

∑j ⅇ
−βEj(N,V) is 

nothing but probability. So we can write it like β∑j Ej Pj pj . Ej Pj is nothing but variabl now. 

We can write β<PE>. This is the second term of equation 6 that is present in the right hand 

side. 

Now, what about the last term or third term? The third term in the expression 6 present in the 

right hand side is 

∑j Ej (N,V)ⅇ
−βEj(N,V)

×∑j ⅇ
−βEj(N,V)

×(−β)×(
∂Ej

∂v
)

N

(∑j ⅇ
−βEj(N,V)

)2
 

Now we can simplify this one like  
∑j Ej (N,V)ⅇ

−βEj

(∑j ⅇ
−βEj)2

× ∑j ⅇ−βEj × (−β) × (
∂Ej

∂v
)

N
.  

                                                  ⇒ 
  ∑j Ej (N,V)ⅇ

−βEj

∑j ⅇ
−βEj

×
β∑j ⅇ

−βEj{−(
∂Ej

∂v
)

N
}

∑j ⅇ
−βEj

 

So the first term here gives Ejpj and the second term gives us Pj.  This gives us β <E> <P>. 

That is how we arrived at equation 7, we name this one as equation 7. 

Now, we consider average pressure and will differentiate pressure with respect to β. We know 

average pressure is nothing but <P> = ∑j pj (N,V,β) Pj (N,V)  Now, we substitute the value of 

pj here and we get the value of average pressure. 

                                                  <P> = 
∑j(

∂Ej

∂v
)

N
  ⅇ

−βEj(N,V)

∑j ⅇ
−βEj(N,V)       

Now we will differentiate average pressure with respect to β keeping N and V constant. 

             (
∂<P>

∂β
)

N,V
  =  -  

∑j(
∂Ej

∂v
)

N
  ⅇ

−βEj×(−Ej)

∑j ⅇ
−βEj

  +  
∑j(

∂Ej

∂v
)

N
  ⅇ

−βEj

(∑j ⅇ
−βEj)2

× ∑j ⅇ−βEj × (−Ej) 

If we further simplify this expression we get  

                                  (
∂<P>

∂β
)

N,V
 = -<EP> + <P> <E> …………….(8) 



From equations 7 and 8 we get  

                                 (
∂<E>

∂V
)

N,β
 + β(

∂<P>

∂β
)

N,V
 =  - <P>  ………….(9) 

Again from first law of thermodynamics we know  

                                               dU = TdS − PdV 

Now we differentiate this with respect to V keeping temperature constant and get 

                                               (
∂U

∂V
)

T
 =  T(

∂S

∂V
)

T
 – P 

                                    ⇒ (
∂U

∂V
)

T
 − T(

∂S

∂V
)

T
= – P ………………..(10) 

.Again                                    (
∂S

∂V
)

T
  = (

∂P

∂T
)

V
 

So this is one of the Maxwell relation. So our equation 10 becomes 

                                              (
∂U

∂V
)

T
 − T(

∂P

∂T
)

V
 = −P……………… (11) 

Now if we compare equation 11 and equation 9, we get β is proportional to 1/T and it has been 

found that the proportionality constant is nothing but Boltzmann constant. The proportionality 

constant turns out to be 1/KB by comparison with expressions for the average energy or average 

pressure with known thermodynamic equations. So we proved that  

                                                             β = 
1

KBT
 

 

Next we consider the calculation of entropy. Suppose, we are considering a function where 

                                                             f = ln Q 

So                                 f (β, E1, E2,...) = ln ∑j ⅇ−βEj …………..(1) 

.  

So we can write,         df = (
∂f

∂β
)

E1,E2,...
ⅆβ  + ∑k (

∂f

∂Ek
)

β,E1,E2,...
ⅆEk …………..(2) 



                                    ⇒  df = -<E> dβ − β ∑j pj dEj 

                                    ⇒  d(f + β <E>) = β (d<E> − ∑j pj dEj) 

                                    ⇒  d(f + β <E>) = β (dU − δwrev) 

                                        ⇒  d(f + β <E>) = β δqrev  =  
∂qrev

kBT
 

                                   ⇒  kB d(f + β <E>) = dS 

                                   ⇒  S = kBf + 
⟨E⟩

T
 + constant 

 Now, we are more interested into difference in entropy rather than absolute entropy. So we 

can safely ignore the constant term. So, if we ignore the constant term we get  

                                                  S = kBf + 
⟨E⟩

T
 

Now we have obtained so far average energy, average pressure and entropy value. 

 

Now, we can calculate basically all thermodynamic quantities like enthalpy. We know enthalpy  

                                                 H = U − < P > V  

 If we differentiate with respect to T then we have  

                                    H = kBT2 (
∂ ln a

∂T
)

N,V
− kBT (

∂ ln a

∂lnV
)

N,β
 

As the value of average pressure is kBT (
∂ ln a

∂lnV
)

N,β
. If we take the V in the denominator we 

get this, these are the constant N and β. 

We can calculate Helmholtz free energy because  

                                              A = U − TS 

and we substitute all the values here we get  

                                               A = U – T kB ln Q – U 

                                  ⇒   A =  kBT ln Q 



Similarly, we can also calculate Gibbs free energy G like,  

                                              G = H – TS 

by substituting the values of H and S. So basically we can calculate all thermodynamic 

quantities if we know the partition function. 


