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Today we will discuss macroscopic state and microscopic state. For that we first 

consider a container (Figure 1) of ideal gas molecules of volume V containing 

Avogadro number of molecules (NA).  

 

Figure 1 

This a description of macroscopic system. So, macroscopic systems are 

characterized by few variables like pressure, volume, temperature, etc. So we can 

observe what is the pressure here, what is the temperature here etc. But, the 

description in terms of microscopic parts requires the specification of the state of 

each individual particle. So while we discuss about macrostate, there we did not 

consider what is the contribution of the pressure for each and every particle here. 

But, the description in terms of microscopic parts requires the specification of 

state of each and individual molecule. Now the number of molecules we 

considered here is in the order of Avogadro number. And for each particle or 



molecule we need to know at least 3 position coordinates and 3 Momentum 

coordinates. So total 6 variables we need to know for each particle. We have used 

Avogadro number of particles here. So typically we need 6 × 1023 variables. Thus, 

to specify the microscopic state of the system, it is convenient to work on a 6N 

dimensional space of coordinates and momentum of N particles. This 6N 

dimensional space is called phase space of the system, and microstate is simply a 

point in the phase space and the macroscopic state on the other hand corresponds 

to a large number of microstates and it depends the volume in the phase space. 

We can say it in this plot here (Figure 2). 

 

Figure 2 

Now, if we specify the total energy, suppose total energy is say E on the N particle 

in system. It allows for a large number of microstates corresponding to this 

macrostate. So as we see that we have 6N dimensional space here, so here we 

plotted 3N number of momentum coordinates versus this 3N number of position 

coordinates and  microscopic state is only a point in that phase space. On the other 

hand, the macroscopic state, it is volume in the volume in the phase space. If you 

considered a particle, consider a particular microscopic state of the system and 

watch how it evolves in time. We will be obtaining phase trajectories. Now, we 



will here consider two examples for better understanding of macrostate and 

microstate. Suppose we are flipping 2 coins (Figure 3), so one possibility is first 

 

Figure 3 

coin comes with head and second coin comes with tails. So this is the first 

occurrence here. Then next occurrences is first for first coins, first coin we get 

tails and for the next second coin we get heads. So for this macrostate means one 

head and one tail, we have 2 microstates, first we have head then tails or tails 

heads, like this. Similarly, for macrostate HH means for both coins if we get head. 

So for this macrostate we have only one microstate. For HT or TH we get 2 

microstates. We can also get tails both the coins, so for this one we get for this 

macrostates, macrostate we define by TT here, we get 1 microstate. So we have 

total 3 macrostates. What are those macrostates? One head one tail is one 

macrostate, both the heads is another macrostate and both the tails is the third 

macrostate. And how many microstates we have? We have 4 microstates. 

Because macrostate HT contains 2 microstates, like HT and TH. Next we take 

another example (Figure 4). We have suppose 4 balls and then we have 2 rooms 

or 2 baskets or whatever you say. And these balls they are identified by different 

colors. Now, if I ask you, you put 4 balls in different manner, what are the 



possibilities? First possibility is all 4 balls are in the first room and there is no 

balls in the second room. So this is one macrostate possible. So this macrostate, 

1 microstate is possible.  

 

Figure 4 

Then we can have blue, red and green ball in one room and the red ball in second 

room. And now we can change the ball, means 3 ball in first room and 1 ball in 

second room. So for this kind of arrangement we get 4 microstates. Now we can 

have both rooms we can have the equal number of balls means 2.  If we rearrange 

the balls so we gets 6 different possibilities here and then in the fourth case. 

Suppose we put 1 ball in the first room and 3 balls in the second room and for 

this case we get 4 different possibilities. And the last case, the first room is empty 

and the second room contains all the 4 balls. So how many macrostates we have 

now? We have we have 5 macrostates, and how many microstates are there? We 

have 16 microstates. Like, for the first macrostate we have only 1 microstate. For 

the second macrostate we have 4 microstates. For third macrostate we have 6 



microstates. For fourth macrostate, we have 4 microstates. And for the fifth 

macrostate we have only one microstate. So, now we understand what is 

macrostate and what is microstate. 

Next we start with Boltzmann factors. So now, we discuss Boltzmann factors. All 

of you know Schrodinger equation. The Schrodinger equation, for N body system 

is, 

ĤΨj(1,2,3,…) = Ej(N, V) Ψj(1,2,3,…) ----------------(1) 

Where, j = 1, 2, 3, …. = no of microstates 

So basically what we consider here is we consider a cubic box containing N 

number of ideal gas molecules and so we have one container here and the volume 

of the container is V, and edge length of each edge of this box is ‘a’. So for this 

kind of systems, so this is our system here (Figure 5), we are considering.  

 

Figure 5 

So we are considering a system is like a cubic box containing N number of ideal 

gas molecules and volume of the container is V and edge length of the box is a. 

So V is nothing but a3. And for this kind of systems, we write the Schrodinger 

equation like equation 1, and j = 1, 2, 3, …, these are microstates. Now, for this 

special case of ideal gas, since ideal gas that do not interact with each other, we 

can write, Ej, the function of N and V, we will discuss why Ej depends on or how 

does Ej depend on N and V, number of particles and volume V. If you go back 

and check, Schrondinger equation and this 1, 2, 3 they represent the coordinate 



of particle one, the coordinates of particles 2, coordinate of particle 3, etc. Now, 

Ej is like this, 

Ej(N,V) = ε1 + ε2 + ε3 + ….. + εN ------------(2) 

So, this is our equation 1. And we can say this is our equation 2. What at are those 

ε1, ε2, etc are the individual molecular energy. Number of particles it means N 

number of particles. So Ej depends on number of particles. So that is how the 

independency of Ej comes here. And we can add them the molecular energy 

levels. Because we are considering here ideal gas. Now for example, if we 

consider the monoatomic ideal gas in that container, presented above presented 

here or considered here, if we ignore the electronic states and focus only on the 

translational states, then εj’s are just the translational energy given by like this, 

εnx, ny, nz = (h2/8ma2) (nx
2 + ny

2 + nz
2) 

 Since, we consider a 3 dimensional box we get this expression. So this is related 

to you know the particle in one dimensional box. So this is for the energy value 

for the energy expression for particle in 3 dimensional box. Now, how does the 

V dependency comes. Now the V dependency comes, if we see the expression 

here, we see that there is one term called a2. So in the above expression, we have 

a term a2 in the denominator and we know and a is nothing but V1/3, we considered 

cubic box. So it says, or it depicts the volume dependency of Ej. So now we know 

how does Ej depends on N and depends on V. So what is our goal? So we want 

to know the probability that a system will be in the jth state having energy or with 

energy Ej. So we want to know the probability. Because if we know the 

probability then we can calculate the average quantity with the help of the 

discussion that we discussed in the last class. For this we consider a huge 

collection of systems in contact with a heat reservoir at a temperature T. Each 

system that collection has the same values of N, V and T, but is likely to be in 



different quantum States, consistent with the values of N and V. Such a collection 

of systems is called an ensemble. 

So, what is the definition of ensemble? We will just define ensemble. It is an 

idealization consisting of a large number of mental copies sometimes infinitely 

many. So we consider many many or huge number of or large number of mental 

copies of a system, considered all at once each of which represents a possible 

state that the real system might be in. Since, we considered constant N, V, T. So 

we are basically describing Canonical ensemble (Figure 6). 

 

Figure 6 

So in Canonical ensemble number of particles, volume of the system and the 

temperature are fixed. Now, basically what is ensemble? If we represent a 

pictorially, we will get like this. So these are the mental copies of our system. 

And they all are having constant N, V, T. So let me draw it again little bit in better 

manner. So we have like this. So all are having in same number of particles, 

volume and temperature fixed, etc. So we have heat reservoir here, and if we just 

put one insulator here, whole thing is isolated from the surroundings. So we have 

thermal insulator. So these are all mental copies. So our goal is to find a state j 

having energy Ej and for that what is the probability? That is our goal. 

We are defining one quantity aj, which is number of systems in the state j with 

energy Ej. How many systems are there in the j state having energy Ej? That we 



called aj. And A, represents total number of the systems in the ensemble. And this 

A is very large number usually. The relative number of systems in the states with 

energy E1 and E2 must depend on E1 and E2. So we can write, 

a2/a1 = f(E1,E2)---------- (3) 

So what is a2 and a1? So a2 is the number of states having energy E2, and a1 is the 

number of states having energy E1. Since, energy is a quantity that depends or 

that must always be referred to a zero of energy. In equation 3, must be of the 

form a2 by a1 is function of difference in their energy. Because energy is a quantity 

that must always be referred to a zero of energy, so we need to conside zero of 

energy. So the dependence on E1 and E2 in equation 3 must be of the form, 

a2/a1 = f(E1 – E2)---------- (4) 

Now this equation 4, is true for any two energy states. Thus, we can write, 

 a3/a2 = f(E2 – E3) and a3/a1 = f(E1 – E3) 

Again, 

a3/a1 = (a2/a1)(a3/a2) 

f(E1 – E3) = f(E1 – E2) f(E2 – E3) ----------(5) 

The above equations 5 is very similar to  

ex+y = exey 

So, a2/a1 = eβ(E1 – E2) -----------(6) 

So in general, β is a constant and we will later see that β is inversely proportional 

to absolute temperature or we can write β is 1/kBT, where, kB is Boltzmann 

constant. Later we will prove it. In general equation 6 can be written as 



am/an = eβ(En – Em) -----------(6) 

So, am α e – βEm) 

am = ce – βEm) 

where, c is a proportionality constant. So what is the value of c? We will see it. 

 

So, this is how we calculate the value of c and calculate the probability (pj(N, V, 

β)) of state j, having energy Ej(N,V). 

So what you obtained so far? We obtained, 

 

So what is our goal? Our goal is to get the probability of state j having energy Ej 

that we arrived here. So this is expression for that. And the denominator we have, 

we define it as Q. And this Q is known as canonical partition function. 



 

So our expression of Pj, now reduces to like this, 

 

Pj(N, V, β) = (e–βEj(N,V)) / Q(N, V, β) 

Since, we have obtained the expression for Pj, we can calculate various 

thermodynamic quantities.  

 

 

 

 

 

  


