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Recap: Bifurcation diagram for the logistic
map -
* How to make this diagram: Start
at initial value % for given r.

3“ Iterate 5000 steps. Discard.

Iterate another 5000 steps. Plot
' the points. Increase value of r.

J Repeat.

4\& + As the parameter ris varied,
different periodic orbits become
stable (at bifurcations).

* These are visible in this diagram,
T but o are lots of other details,
' ') some of which we will discuss.
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So, in the last two lectures we saw some of the phenomenology of non-
linear dynamics in the logistic map, how the or different orbits are born.
We saw the bifurcation diagram, and we noticed that as you change the
parameter r you have period 1, period 2, etcetera, etcetera. The period
doubling bifurcation cascade ends at r infinity and this doubling bifurcations
are characterized by this functional renormalization group and explained by
these two numbers delta which tells you how the windows of stability keep
narrowing and the number alpha which tell you how the different parts of
the orbit come together. How does a make a diagram like this? We have
seen Singers theorem which says that, if there is a stable periodic orbit the
point half is going to be attracted to this particular periodic orbit. It is
very important when doing these kinds of studies to look at the asymptotic
behavior and so it is necessary to discard transients. And so, the practical
way for those of you who would like to be able to generate such a picture is to
do the following. You start with the maximum for technical reasons instead
of starting at exactly the point half you can start at 0.50001 or something



which is close to half, but not exactly half. You iterate the map for let us
say 5000 steps, discard it as transient behavior, iterate it for a another 5000
steps and you plot these points. If the map has come to the stable fixed
point over here all the 5000 points at let us say 2.6 will be a single point,
but as you go for larger values of r these 5000 points will sweep out over
the interval. So, what one does over here is you keep changing the value
of r slowly, you start again with this initial value, iterate, discard, iterate,
plot, increase the value of r continue etcetera. Now, as you keep varying this
parameter r, the different stable periodic orbits become visible and you can
see the bifurcations. But in addition to these stable periodic orbits we can
see a lot of other behaviour, you can see these periodic windows over here,
you can see some very evident kinds of lines and what we will try to discover
in this particular series, in this lecture today is how does one understand a
picture like this. (Refer Slide Time: 03:35)

How best to characterize the dynamics?

* The Lyapunov exponent provides a quantitative measure of how
stable or unstable the motion is.

* At a fixed point of the map we have 1 A0
_ e ﬁm)'
Ins1 = f(2n) = 2n et
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+ Say this value of 2 is 2", namely f(x") = 2",
* How does a small deviation from the fixed point evolve?
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Now, let us start by wanting to characterize the dynamics. The Lyapunov
exponent is the quantity which provides a very quantitative measure of how
stable or unstable the motion is. At a fixed point of the map we have the
following condition, that

Tp4+1 = f(xn) = Tn

. So, x, gives you x,.1 this is a fixed point. We determine this by looking
for this equation f(z)—x = 0, you find the 0Os of this equation and that gives
you a value x*. Now, how does a small deviation from the fixed point evolve?



In order to find that we start the point z;, which is z; = x* 4+ §; and iterate
it.
(Refer Slide Time: 04:35)
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* The fixed point is stable if | /(") < 1, and unstable otherwise.
+ The change (or growth) factor is
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If you iterate it you get x2, which is x5 = x* + d,. This is just f(z*) 4 ; and
doing a Taylor expansion and retaining just the first term, says that this is
approximately f(z*) + 51.% at the point z*. Since, f(z*) = z*, we find that

df
0y = 51.%
at z* or just writing it in more compact notation as f’'(z*).6;. Now, this
fixed point is going to be stable if f/(z*) < 1 in modulus and it is unstable
otherwise. So, the initial separation which was delta 1 it has become delta
2, and the change factor or the growth factor it could be less it could be a
shrinkage factor whatever, so the change factor is just delta 2 by delta 1 and
this is simply the modulus of f prime of x star. If I were to write this as the
exponential of a quantity lambda, where lambda is just the logarithm of the
f of x star, then this factor delta 2 by delta 1 will be less than 1 if lambda is
less than 0. And it will be greater than 1 then it will be less than 1, namely
it will shrink if lambda is less than 0 it will grow if lambda is bigger than
0. And, so this quantity of lambda being bigger than 0 or less than 0 is
more or less the same as f prime being less than 1 in modulus. But this can
generalize. (Refer Slide Time: 06:45)



* For a periodic orbit of period k, if the elements of the arbit are
1,T9,...,Tk,SincE
I r"'I_..".I = 1y, starting from =, + &

after k steps one has

i
4tk

* where

fi= @) f'(za)...f ()
k
=] 7

=1

WAL £

So, if we now look at a periodic orbit of period k, and if the elements of the
orbit are x 1, x 2 etcetera all the way up till x of k. Now, f to the k of x 1 is
equal to x 1 that is the statement of the periodic orbit. So, if we start with
the point x 1 plus delta 1, after k steps one has delta of k plus 1 is delta 1
plus the derivative of f k with respect to x evaluated at this point which is
just the same as f prime of k at delta 1, it times delta 1. f prime of k is f
prime at x 1 evaluated f prime evaluated at x 2 all the way up to f prime
evaluated at x of k. Namely, it is the product of the slope of the map at all
the points of the orbit. (Refer Slide Time: 07:50)
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Now, the growth factor; after k steps is delta k plus 1 divided by delta k. And
this is given by the modulus of f prime of k, and I write this as exponential



of k times lambda, where lambda now is 1 by k times this quantity log of
f prime k and I can notice that f prime k is product of f primes. So, the
logarithm, sorry the logarithm of this product is the sum of the logarithms
of the individual slopes, so my expression for lambda is 1 by k, sum over the
various points of the orbit log of the modulus of this slope. Now, that I know
how to characterize the stability of a fixed point or of a periodic orbit, I can
extend this idea to any arbitrary orbit and define the average growth rate of
perturbations in exactly the analogous way. Except now I write lambda as
the limit of n going to infinity of 1 by n times the sum of the logarithms of
the slope along this orbit, exactly like this particular statement, except that I
have interchanged exchange k for n and I allow n to go to infinity. So, I have
the average value of this particular growth factor. And after n steps delta n
will just be delta 1 times the exponential of n times lambda. This quantity
lambda is termed the Lyapunov exponent and it gives you the average rate of
growth of small displacements from some reference or fiducial point. Clearly,
if the this Lyapunov exponent is positive then the initial separation will grow
without bound because it is just the exponential of n times lambda. This kind
of unstable motion because these small separations growing uncontrollably
this is what is called chaos; alternatively, if the Lyapunov exponent is positive
then the motion is termed chaotic. (Refer Slide Time: 10:41)
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The Lyapunov exponent can be calculated for the logistic map using exactly
this formula that we have over here. So, at any value of r, you iterate the
map, you start with some arbitrary initial point, you keep iterating the map
calculating the slope as you are going along take the logarithm, average it



out over the entire map and we plot it as a function of r. Notice that if
you have a super stable orbit the value of the slope becomes 1, the value of
the logarithm of 0, sorry the value of the slope becomes 0, the value of the
logarithm goes to minus infinity and that dominates the sum. So, at every
super stable orbit you find that the Lyapunov exponent is actually negative
infinity. Numerically, you do not always reach negative infinity, but you can
see the indications of that at this super stable orbit, at this super stable orbit
and many other super stable orbits all over the place. At a bifurcation on
the other hand the slope of the map is equal to 1 and therefore, the Lya-
punov exponent must be exactly 0. So, at every bifurcation you find that
the Lyapunov exponent takes the value 0 that was at the trans-critical bifur-
cation. Here it is at the period doubling bifurcation and here tucked away
inside that the tangent bifurcation, you find that the Lyapunov exponent is
actually 0. The Lyapunov exponent actually first becomes positive only at
r infinity, because before r infinity all the orbits are periodic. And for peri-
odic orbits the Lyapunov exponents are negative because that is the way the
whole thing is organized and this curve is entirely on then below the below
the 0 line. So, you have chaotic motions so to speak only after the period
doubling accumulation which is also one of the reasons why it is called the
period doubling route to chaos. (Refer Slide Time: 13:07)

Take another look at the bifurcation diagram
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Let us take another look at the bifurcation diagram. As I mentioned right
at the beginning at each value of r you discard a few hundred iterates and
you plot a few hundred or a thousand iterates depending on your taste. But
these are not you know even away from the periodic orbits. Over here you



can see that these are not spread out uniformly in the region where they are
present, but they seem to be concentrated along certain lines there are more
of them at certain regions and fewer of them at certain other regions. This
is these are spread out over the interval in a highly non uniform manner.

(Refer Slide Time: 13:55)

Invariant measures

* The local “velocity”, namely how fast the orbit moves away from a
point in the phase space (here the ling) depends on the local slope.

* Points tend to accumulate near the map maximum and its iterates.
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What is the probability of finding a point at a finding a group of points or
orbits near any point in the phase space? This depends on this something
like a velocity because, you have got you know we have got points moving
around in phase space. So, the local velocity at a point tells you how fast
the orbit is moving at that point. The velocity over here is just of course,
the derivative or the local slope. So, that tells you whether stuff is moving
fast or slow. Now, points are going to accumulate where the velocity is slow
and the lowest value that this velocity this slope can take is 0. So, points
tend to accumulate near the maximum of the map, and not just the near
the maximum of the map also the points to which the maximum will iterate
and iterate consecutively. So, the points will move very fast where the slope
is high, they move slowly where the slope is low or it has a slow precursor.
(Refer Slide Time: 15:15)



So, coming back to the bifurcation diagram this is at much lower resolution
than the earlier one that I have shown. But you can still see that there are
these very strong and prominent curves, and I just like to demonstrate that
these really are the images of the map maximum and its iterates. So, let
us look at that. There you can see very nicely that this, ok. So, the upper
envelope is just where the map maximum iterates. The second curve over
here this dark one that is moving around like so, this is where the map will
iterate the maximum will iterate on the second term, then the third and the
fourth and you can see over here are the particular curves. So, there on top
is the maximum, here is the iterate of the maximum again, here is the third
iterate, here is the fourth iterate and all the and there are even higher order
iterates that are sort of visible, but all these different points tell you that
along the line or in the phase space points are going to be moving around
slower and faster they are going to tend to accumulate in certain regions and
not in certain others. This gives us an idea that there could be along the
line in the interval there is a density, ok; this density which we denote by
the letter rho. For any given value of r there is this density rho r of x that
describes how points are distributed in the phase space which is of course,
here the interval 0 to 1. (Refer Slide Time: 16:56)



Invariant measures

* The local “velocity”, namely how fast the orbit moves away from a
point in the phase space (here the line) depends on the local slope.

* Points tend to accumulate near the map maximum and its iterates.

* For any given value of r, there is a density, .Ur(J') that describes how
points are distributed in the phase space (here the interval [0,1]).

* At r=2, when there is a superstable period 1 orbit, all points are
attracted to x = ¥ , and therefore
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A simple example is useful to keep this concept in mind. So, when r is equal
to 2, we know that there is a super stable period 1 orbit we have just gone
through you know discussing this several times around. Now, if you have
got a super stable period 1 orbit all points or almost all points let us say
are attracted to this point x is equal to a half. What is the point that is
not attracted to x is equal to a half? It is the point 0, because 0 is a fixed
point an unstable one, but it is fixed. The point 1 goes to 0, so that is also
not attracted to a half, but barring these two points everything else in the
interval goes to the point half. Therefore, the density of points is actually
just a delta function and this density of points is just delta of x minus half.
I put the subscript two to indicate the value of r over here. So,

. (Refer Slide Time: 18:23)



« If there is a density plr) that is invariant under the flow, then it must
satisfy the Frobenius-Perron equation,
N
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+ Experimantally, it can be determined as follows,
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At different points a different values of r you can find different this density
keeps changing, but if there is an invariant density then it must satisfy an
equation that was first described by Frobenius and Perron, and it is just a
statement of stationarity. Namely, if you have a density which is invariant p,
then if you have got a function f that is the mapping then

all the points y when they map to the point x that must give you back
p(x) which is the same. So, an invariant density has to satisfy this equation
of stationarity known as the Frobenius-Perron equation. To determine this
density experimentally is not very difficult. Again, starting with some typical
initial point zq, if you just keep iterating this initial x initial point discarding
transients and then looking at where they land up on the interval that gives
you rho of y. One can anticipate a few things; for example, sorry. Over here,
if I were to try to iterate at a point over here everything will go to these two
fixed points, the period two orbit, so eventually everything must land up on
two delta functions. If I iterate at r infinity there must be two to the infinity
so to speak points. So, it must be so many delta functions this density must
start looking somewhat complicated. At r is equal to 4 you see that the
entire interval is covered and it will be interesting to see how this interval is
covered by the various points. So, let us do this experimentally by starting
with some initial condition, iterating this map and collecting all these values
into this density. (Refer Slide Time: 20:54)
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So, it r is equal to 3.4, as we had discussed we have these two delta functions.
At r is equal to 3.57, you can see that this invariant density is quite a bit
more complicated, although there is an interesting structure over here which
we may come back to in a subsequent lecture. And it r is equal to 4 which
is the most interesting point over here, you find that the density has a very
nice shape which is given by an analytical formula 1 over the square root of
x into 1 minus x, times the normalization factor. So, rho 4 has a very nice
analytic form and what you see superimposed over there are the you know
just a numerical experiment where we took a few maybe a million points or
so, and calculated this particular density. Given the fact that you have a
nice formula describing it is worthwhile trying to see how you can derive it.
And this invariant density can actually be computed for the value of r equals
4. (Refer Slide Time: 22:00)
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The invariant density can be computed for r = 4

* The logistic map, Tn+1 = 4x,(1 = 2, ), changing variables,
s 9
Ty = 5in“ 78,
* Bives sin® mily ., = dsin® xf, cos® nfl,

=sin® #{24,)

flx

* This is basically the tent map (choosing roots carefully) NN
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To do that it is useful to change variables. From the logistic map you note
that x is a positive number that lies between [0,1], so the transformation
over here is to a variable 0(x) goes to sin®(7f,). And you can see that ¢
now lies between [0,1], and that will give you a very nice mapping between x
and 6. In this equation just becomes sin*(7f,,) and on this side it becomes
sin?(mw26,) So, just analyzing this particular equation, looking at the roots
of these various sins and so on you note that this is basically the tent map.
Namely,
g(0) =260,0 <2

and
g(0)=2-20,0 >2

. S0, you see this is the correspondence between these two maps, the logistic
on the one hand, and the tent on the other hand. Through this transforma-
tion x goes to sin squared by theta. So, the tent map is

9n+1 = g(en)

, where g(0) is that function over there. (Refer Slide Time: 23:40)
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Considering the map f.+1 = g(fh) !

* The Frobenius-Perron equation, i W a3
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* can be solved simply since each point_ﬁ' has pre-images /2.1-4/2
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And when you look at g at this map ©,.; = ¢(©,), the corresponding
Frobenius-Perron equation is actually quite simple to solve. And we note
that this is the form that the Frobenius-Perron equation takes. You start
with the density rho of psi of, rho of psi deep psi and then you map the
point psi to theta by a you know to g psi which is theta and that gives you
this function. And you notice that any point theta has contributions from
only two points in the pre image. So, only two points from this equation
mapped to a given ©, ©/2 and 1 — ©/2. So, the point theta has precisely
two pre images, ©/2 and 1—0 /2 and therefore, you can rewrite this particular
equation as

(0) = 30p(6/2) + p(1 — 0/2)

. And this half is not the average half, but it is the slope of two because
of the delta function. And solving this particular equation says that rho of
theta is equal to 1, because this is true for all theta the only solution is that
rho of theta is 1, and this is a good invariant density because the integral
over the interval is equal to 1. And this basically says that if you take the
tent map and iterate an arbitrary point then points are uniformly distributed
over the entire interval [0,1]. Uniform because p(f) = 1,with fol p(8)do = 1.
So, it is just a uniform distribution. (Refer Slide Time: 25:56)
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* From this one gets

) ir
olx) = pl6) |

df

* 35 was seen earlier... }

®

Now, these two maps the tent map and the logistic map are conjugate to
one another. And therefore, you get that rho of x because we know what the
transformation variable is x is just sin square theta. So, rho of x is given by
this particular formula, it is rho of theta divided by dx by d theta and doing
the little algebra you get that this is just equal to pi of under root x into 1
minus x. And we have already seen that in the in you know in the in the
map earlier we saw that the numerical exploration also gave you this very
nice verification of the same formula. (Refer Slide Time: 26:35)

One can also calculate the Lyapunov
exponent since the density is known-

* The space average of a given variable is
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* From the Birkhoff ergodic theorem, if an invariant measure exists
then
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You can do a lot once you have this invariant density. If you know the
invariant density for a map you can actually do a lot. And we will use this
invariant density and the analytical calculation of rho sub 4, namely the
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value of the invariant density for the value of the parameter r is equal to 4,
we will use this to compute the Lyapunov exponent. Now, from the Birkhoff
ergodic theorem, basic statement of the ergodic theorem is that if there is an
invariant measure, then time averages and space averages are the same. So,
given a particular variable a, its space average is the average over the entire
face space given this invariant measure rho is just the integral from over the
space in this particular case is just 0 to 1. It is a of x times rho of x dx. The
time average on the other hand is indicated with the over bar over here, is
the limit of n going to infinity, maybe there should be a factor of 1 over n
over here, but it is the limit of this is this particular average a evaluated at
the various points x sub i, all the way from 1 to n and I will add over here
1 by n over there. So, let n go to infinity you get the time average. (Refer
Slide Time: 28:28)
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* One might have anticipated this since
for r = 4, the logistic map is conjugate to
the tent map, which has slope
everywhere 2 (in magnitude), and the
Lyapunov exponent is the logarithm of
the average slope....

The Birkhoff ergodic theorem says that if the invariant measure exists, then
this time average and the space average are equal. And we notice that the
Lyapunov exponent was defined as a time average. Namely, lambda was
given as the limit of n going to infinity, 1 over n sum of the logarithm of f
prime of x i, this particular average over here. Now, this has to be exactly
equal to the space average. So, the same quantity f” which is the In(4(1—2x)
times the invariant measure which is 1 upon 7/x(1 — z, dx. The integral
is fairly simple, can solve that quite nicely to find the value of log 2. So,
the Lyapunov exponent for the logistic map at the value r = 4 is known
analytically to be equal to the in2. We might have anticipated this because
at r=4 the logistic map is conjugate to the tent map and the tent map has
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slope 2 in magnitude everywhere. And the Lyapunov exponent is just the
logarithm of the average slope and over here the slope everywhere is true
then the logarithm the average is also 2, in the logarithm would be log 2
and so log 2 is the numerical value of the Lyapunov exponent for the logistic
map for the value of the parameter r is equal to 4. Now, this brings us
to the end of this lecture, but there is lots of lots of other details that we
would like to fill in. What more can one do with invariant densities, would
be something which is interesting to know. But I would like to just leave
with the following kinds of issues that in hand. The invariant density we can
see at 4 was simple. For all the periodic orbits it was quite simple. But at
the point of accumulation of all the period doubling bifurcation this is just a
little above r infinity, it has a very interesting and nice structure. So, in the
subsequent lectures we will turn a little to trying to describe, this kind of
geometry which is known by the term of fractal geometry. So, we will come
back to this issue in the next lecture of the series.
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