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Lecture 08
Characterizing the period-doubling route to chaos.

In the last lecture, we saw that the a map such as the logistic map when
you vary the parameter, the period one fixed point it changes its location as
well as its stability. (Refer Slide Time: 00:39)

And, at the value r = 3, the period 1 point becomes unstable a period 2
orbit is born at the so called period doubling bifurcation. (Refer Slide Time:
00:45)
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Now, how does this map actually change? As you increase r from let us say
1.8 to 3, notice that the point at which it crosses the diagonal namely the
fixed point that keeps changing in location along the map. The local stability
which is given by this slope of the map the derivative; the derivative of the
map at this fixed point is 2 minus r and so, when r is 1.8 it is actually small
and positive. When r is equal to 2 is equal to 0, when r is 2.7 it is 0.7 negative
and when r is equal to 3 it is negative 1. So, the orbit itself is born at r is
equal to 1 and the stability that is the value of f prime or this derivative
over here that keeps decreasing so, the orbit in the sense the fixed point is
becoming more and more stable. When r is equal to 2 the slope is equal to
0 and this is the most stable that it could possibly be. So, such behavior is
called super stability namely to have a slope 0 because this means that that
fixed point attracts everything maximally. When you take the sorry. So, do
you just come back over here? At this point you have the period doubling
bifurcation the period 1 orbit is no longer stable and instead a period 2 orbit
is born. (Refer Slide Time: 02:45)

Now, if you look at the doubled map, the doubled map f 2(x) and as we have
discussed in earlier lectures looking at the intersections of the map with the
diagonal tells you the fixed points. So, here are the two fixed points of period
2, but if you look at the double map let us say at a value r is equal to 3.4
notice that the inner part of the map if you were to just concentrate on that
particular part of the map expand it and flip it around. (Refer Slide Time:
03:21)
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Then, when you flip it around and expand it to assert to the required scale
you notice that it looks a lot like the map f(x) at another value of r. So,
namely that we try to look for some point in r, where the intersection is on
this side so, this is where that intersection looks to be located, notice that
it is over here. So, when you look at the map, turn it around expand it, it
looks like the same map at another value of r. (Refer Slide Time: 03:59)

Now, as you keep changing the parameter the stability of the fixed points
change. Recall that if x 1 and x 2 are the two points of the period 2 orbit,
then the stability of the orbit is determined by this quantity

f ′2 = f ′(x1)f
′(x2)
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and the periodic orbit is of course, it is stable if the | f ′2 ≤ 1. Now, these
two points of intersection of the period 2 of the period 2 orbit here and here
at one value of r. As you change keep changing r, those points migrate and
now these two points are over here and over here. And, as you can see the
slopes keep changing they are born both slopes are 1 in modulus and then
they slowly keep changing and the product over here can first decreases to
0 and then it increases and therefore, one can expect that in the same way
as period 1 bifurcated to period 2 orbit, period 2 itself at some point will
become unstable and it will give birth to a period 4 orbit as r is increased.
(Refer Slide Time: 05:37)

This is really the heart of the period doubling root 2 infinitely long periods
period m 2 to the m orbit becomes stable at r sub m. When period 2 to the m
becomes stable the period 2 to the m minus 1 necessarily becomes unstable.
And, so, period 1 became unstable 2 was stable, 2 becomes unstable 4 is
stable, 4 becomes unstable 8 is stable and so on and so forth. The values
of these bifurcation points of the parameter at these bifurcation points is
as follows: r 0 namely where period 1 becomes stable is 1, period 2 became
stable at 3, period 4 becomes stable at 3.449, period 4 sorry, period 8 becomes
stable at 3.544 etcetera, period 16 at 3.56 and so on. These are known to
much much higher precision, some of them are even known analytically, but
as you can see the difference between these between successive members of
this sequence namely the width of the windows of stability so to speak those
are decreasing. (Refer Slide Time: 07:13)
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This was investigated extensively by Feigenbaum in 1978 and earlier and he
defined this particular ratio, the ratio of the widths of these windows.

1

δm
=
rm+1 − rm
rm − rm−1

So, what is the width of this window divided by no. So, here is the window
where period 2 to the m is stable and this is the window where 2 to the m
minus 1 is stable. So, these windows keep shrinking I think there should be
this is a sorry this is 1 over delta m over here is defined ok. So, Feigenbaum
noticed that these windows not only do they keep shrinking, but they do so
at a geometric rate and they and they do so with a very interesting set of
properties. The first property is that this ratio decreases approximately by
a factor of 5 at each step and as m goes to infinity this reaches the value
delta which is this number 4.669. This is an irrational number and it is
known to many many more places of decimal. All these period doubling
bifurcations they accumulate at a value of r infinity which for the logistic
map is 3.5699 etcetera etcetera. So, at between 3 point between 3 and sorry,
so, between 3 where the first period doubling bifurcation takes place and
3.5699 which is somewhere over there. All period 2 and all powers of 2
have occurred at that point because each of these windows is shrinking by
a factor of about 5, the rate of convergence of this quantity is geometric.
This number is very particular to the logistic map, but it turns out that
this number delta over here is not and this is a universal number to the first
of the universal numbers that was discovered by Feigenbaum and it is an
extremely important number because the way in which this period doubling
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by this period doubling cascade, the widths of the intervals in which these
are stable each particular periodic orbit that shrinks at this particular rate
4.669. (Refer Slide Time: 10:03)

Now, coming back to the doubling you note that, we observed that the middle
part of f 2(x) at some value of the parameter when you flipped it and you
expanded it look like the map itself for another value of the parameter. (Refer
Slide Time: 10:25)

This led Feigenbaum and collaborators to look at the following composition
this doubled function looks like itself when it is rescaled. So, Feigenbaum and
Cvitanovi wrote down this particular equation which describes this doubling
operation. So, if you have a function which when rescaled by a factor of alpha
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doubled, flipped around then it looks like itself. So, if you can find a fixed
point of this equation or namely if you find a function which satisfies this
property then you will begin to understand what happens in this particular
map. And, you solve this equation for some polynomial smooth function of
g and there is a sort of an involved way of doing this which is described in
series of very nice papers by Feigenbaum. You find that alpha is a number
2.503 or thereabouts and this is again a universal number which is true for
all quadratic maps. So, requiring the doubled function to look like itself and
asking for this function g of x to be of a polynomial type that gives you
this universal number 2.503 and along with delta which is 4.669 these two
numbers quantitatively characterize the qualitative statement of a period
doubling root to chaos for quadratic maps ok. Let me just state this again
because this is sufficiently important. To say that you reach an infinitely long
period by doubling at discrete values of the parameter say period 1 gives rise
to period 2, period 2 becomes unstable gives rise to period 4 and so on and
so on and so on that is a purely qualitative statement. What Feigenbaum
did was to say that not only does this happen as the phenomenon, but the
value of the parameter at which this happens these values keeps shrinking
at a precise rate which is 4.669 and there is another geometric characterizer
which tells you how you must rescale the function at what by what factor
and that factor is 2.503 and this is true for all quadratic maps. By quadratic
map I mean a map which where the maximum of this map; this maximum
is the leading order is quadratic. (Refer Slide Time: 13:31)

Now, you can do this very accurately for super stable orbits. Remember
that a super stable orbit is one where the derivative this f’= 0. If you have a
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periodic orbit of period k, then it is stability is determined by the following
multiplier

f ′k = f ′(x1)f
′(x2)...f

′(xk)

. So, this multiplier over here is just the product of the slope of the function
at all the points on the period. The lowest value that this quantity can take
in magnitude is 0 and this can happen when one of these one of these points
x 1 or x 2 or whatever when one of them is the map maximum if this is some
x sub j then f prime of x sub j is equal to 0 and this entire product would
vanish. This defines a super stable orbit to the logistic map this means that
if the point half is one of the points of the cycle, then one has a super stable
orbit. (Refer Slide Time: 15:05)

Clearly, for half to be the period-1 point, we must have r is equal to 2 because
r x into 1 minus x. So, 2 times a half into a half gives you a half. So, half
becomes a period-1 point only when r takes the value 2 and we call this r
bar 0 0 to tell you that it was period 1 to the power 0, r bar to say that this
is the value where you have super stability. One of the tutorials you have
to work out that period 2 is super stable for the value of r 1 which is 1 plus
the square root of 5. And, for any k, you can solve this equation f to the k
of a half is equal to half; this determines the super stability condition, but
this is now a polynomial in r. It is the polynomial in the parameter and this
can be solved by Newtons method and this is in fact, what Feigenbaum did
in his early calculations. And when you do this for all the powers of 2, you
determine that these windows r m plus 1 minus r m divided by r m minus
r m minus 1, again this is a inverse over here. This ratio delta also has the
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same limiting value the delta m goes to delta which is 4.669. So, whether
you take the points in the bifurcation or you take the points where the super
stable orbits are created the same kind of scaling operates and you find that
the ratio is 4.669. (Refer Slide Time: 17:15)

Furthermore, the elements of the super stable orbit of period 2 to the m,
what are these? You start at a half; you map f to the half f 2 to the half
and so on all the way up till 2 to the m to the half which is equal to a half.
Now, if you define delta m to be the distance between the point half and
exactly midway along this cycle. So, f to the 2 m minus 1 of a half so that is
the distance between the point half and one half the number of iterations on
this particular cycle this defines a quantity delta m. And, in the limit delta
m divided by delta m plus 1 these points also get closer and closer together
they flip from side to side and this as m goes to infinity reaches the ratio of
minus alpha which is minus 2.5029 etcetera which is the same quantity that
we discovered in the doubling transformation. (Refer Slide Time: 18:31)
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Visually, see here is the line x is equal to a half and when you superimpose it
on the bifurcation diagram you notice that this is the point where period 2
is super stable, that is the point where period 4 is super stable, then there is
a point where period 8 is super stable and so on. The quantity delta 1 is the
difference or the distance between the super stable at this point half and it is
first iterate. Delta 2 is the difference between the point half and the second
iterate because this is a period 4 super stable orbit. Delta 3 is this quantity
over here and that is the difference between the point half and it is fourth
iterate because it is a period 8 super stable. So, as these values are delta 1,
delta 2, delta 3 and so on as you can see that they are shrinking and in the
limit they go to the value minus alpha. (Refer Slide Time: 19:41)

These are universal constants and their discovery is been a very important
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step in this entire study of non-linear dynamics. All unimodal maps that
is all maps with a single maximum and a quadratic maximum at the top,
the period doublings are character by the same values of the two constants.
These constants appear in other points also, but the importance over here
is that regardless of what kind of map you have the details do not matter.
So, this will apply to the quadratic map. If instead of the quadratic map
you will study sine, sine pi x or some map like that that will also have the
same numbers and so on. Now, the cascade of bifurcations that you lead
that lead to the onset of chaos at r infinity, this requires explanation by the
so called functional renormalization group developed again extensively in the
70s and 80s and this helps you to understand why the function when doubled,
rescaled, flipped around etcetera looks like itself when it is formalized then
from this you can calculate these values of both alpha and with a little more
difficulty also delta. Those of you who have a copy of the Strogatz book you
would like to see section 10.7 in that text where this is discussed in detail and
there is a very nice and sort of very perturbative argument and our algebraic
approach without renormalization and so on described by Virendra Singh,
there is an article in Pramana in 1985 and I would recommend that strongly
for anybody who would like to take it and perhaps even apply it beyond just
quadratic maps.
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