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Lecture 06
Logistic map
Simple Examples of bifurcations.

Hello, we continue our discussion today on maps and flows and we look
at some Simple Examples of bifurcations. (Refer Slide Time: 00:37)
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The Bernoulli map, [(x) 'Cl.il Anod 1
on the interval [0,1) was discussélﬂ‘-rrﬁé;l in
the last lecture. The dynamics generated by this

map is the same as the shift operator acting on
the symbalic representation of the paint in

binary, namely
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The dynamics of this map exhibits sensitive L
dependence on initial condition, a behavior that
we term chaos.
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Recall that in the last lecture, we had considered the Bernoulli map
f(z) = 2zmodl

on the interval [0,1], this was discussed in detail and we looked at the dy-
namics on this map. When we noticed that the dynamics is the same as if
a shift operator was acting on the symbolic representation of the point in
binary, namely if the point

z = 0.a1a9a3...a5...

whereas as are either 0 or 1. Then this strings the symbolic string a 1 all
the way onwards is a representation of the point. And f(x) namely this
multiplying by 2 and taking the modulo 1 operation was the same as acting
a shift operator on x. The purpose of the shift or the action of the shift



operator is to simply forget the first symbol the leading symbol there and
consider this to be the new point in the phase space. We also saw that the
dynamics of this map shows what is called sensitive dependence on initial
conditions, we also call this behavior chaos. But basically if there are 2 points
that start out at some distance delta apart, then after 1 step; 1 operation
of the shift the distance between these two points is 2 times delta, after one
more operation it is 2 square times delta, after one more it is 2 cubed so and
so on. So, no matter how small delta might be after a sufficient number of
steps the distance between these two points is of order 1. So, this kind of
sensitivity to initial conditions is the behavior that has in the popular sorry,
if the description is that of chaos. (Refer Slide Time: 02:58)

The Bernoullimap, 1z} = 2r mod 1
on the interval [0,1] was discussed in detail in
the last lecture. The dynamics generated by this
map is the same as the shift operator acting on
the symbolic representation of the point in
binary, namely

I=0-ay0p05...8;...
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This map is closely related to the “tent”

map,
flz)=2  z<1f2
[’.) =2-2 z>1f2
. —

The Bernoulli map is very closely related to the tent map, the Bernoulli map
recall is just f(x) = 2z mod 1, and the tent map takes this portion of this
branch of the Bernoulli map and flips it around to make a tent shape. And
the equations for this tent map that f(x) = 2z on the interval [0,1/2] and it is
2—2x from this point onwards. This is slight difference between these 2 maps
particularly, because now the fix point moves from being at the corner of the
square over here at the point 1 to a point which is somewhere intermediate
that point is something that we can figure out easily. But I am introducing
the tent map for a different reason which is a basically to introduce maps
that have a parameter in it. (Refer Slide Time: 04:01)



The tent map is piecewise linear map with a
discontinuity inslopeat == 1/2

where the slope changes from +2 to -2. One
can also write a symbolic dynamics for this
map. More interestingly, the map can be _Irl'ﬂ .
generalized, e

Jlx) =pa r<1/2

=pl-x) x>1/2

ta a family of mappings which change with the value of
the parameter 1. For i < 2 the map is still into the
interval [0,1], but there can be either ane fixed paint or
two, The stability of the fixed paint can be easily
determined since the slope of the map is =

Thiis the fixed point O is stable for 1 < 1, and all fixed
paffits are unstable for any other 1.

Now, the tent map is a piecewise linear map and there is a discontinuity in
slope at the midpoint x = 1/2, the slope changes over here from +2 to -2
in this case. So, here the slope was 2, here the slope is minus 2, but the
modulus of the slope is the same. Now if instead of the map has written in
the previous slide I just now change it to

f(x) = pa,x < 1/2

and
=u(l—x),x>1/2

. Then I get a 1 parameter family of maps. For the map with p equals 2
you can write a symbolic dynamics and show that it has exactly the same
sensitivity to initial conditions that the Bernoulli shift map had. But for this
map over here if I change 1, you can see that the map changes because, the
maximum of the map is exactly at p is equal to; at x is equal to half and
there it takes the value p by 2. So, when p is 3, I find that the map goes
up to the point 1.5 3 by 2 that is and the tent map escapes from the square.
When pis equal to 3 by 2, I find that the map is over here, you know but
the maximum is at 0.75. And at this particular point if x4 is equal to 3 by 4
then we find that the map is actually the tent itself lies below the diagonal
line. So, clearly you can see that if the tent lies below the diagonal line 0
is the only fixed point. If the tents now goes above the diagonal line, we
have this fixed point as well as 0, so there are two fixed points for p bigger
than 1. Now, you can easily see what is the slope of this map? The slope
of this map is always mu on this branch and minus p on this branch so, I



you know the modulus of the slope as I said earlier is © And we have already
seen that at the fixed point, if the slope of the map is less than 1, then we
have a stable fixed point. So, long as y is less than 1 then 0 is the only stable
point because, we can see that the slope of this map at the fixed point is
exactly p. Once mu crosses 1, the slope over here exceeds 1 and the slope
over here also exceeds 1 in modulus and therefore both the fixed points are
unstable for any p bigger than 1. Notice that of course, for all values of u
there are always two fixed points in the interval, the fixed point at 0 and the
fixed point at wherever the intersection happens to lie. Today we will leave
the tent map at this point and come back to it later on, and perhaps in the
tutorials. (Refer Slide Time: 07:51)

+ While the tent map will be discussed in detail 4
|ater (and in the tutorials), let us look at a closely
related map, the logistic map. ) dj
+ This is a smooth map with a quadratic
nonlinearity, ! 3
Tosl =TTo(l = 24)
—
+ For (< r < 4, this s a map of the interval [0,1] ” s
into itsalf. —_— ; y
(3 .
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* There are two fixed points in the interval, D and 1 - - &~

I
* The slope of the map at the fixed point 0 is 1, so this fixed point is stable
onlyfor 0<r<1 e e

+ At the SECE:d fixed point, the slope of the map is | 2-r|, so this fixed point
(jstablefnrl <r<i —_— —

But let me now look at a related family of maps called the logistic map or
the quadratic family. This map is given by

Tpi1 = ra,(1 —x,).

As you can see this map is a quadratic function it vanishes at the point x is
equal to 0 and at the point x is equal to 1 and so long as r is between 0 and
4 this maps the interval 0 1 into itself. Like the tent map there are two fixed
points for this map 1 is at the point 0 and the other you can easily work it
out is at 1 minus 1 by r, and so long as r is bigger than 1, the second fixed
point also lies in the interval. The slope of the map at the fixed point 0 is r,
so this fixed point is stable only for r lying between 0 and 1. At the second
fixed point, the slope of the map is 2 minus r modulus you can easily work
that out. So, this fixed point is stable between r between 1 and 3. So, the
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slope at this point is basically 2 minus r the modulus of the slope at that
point is 2 minus r, and so this fixed point is going to be stable between r
lying between 1 and 3. (Refer Slide Time: 09:55)

Bifurcations
The study of how the dynamics changes with parameters
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How does the behavior change with parameters? This generally when the
when the dynamics changes abruptly as you change a parameter smoothly,
this is termed a bifurcation and in this logistic family the quadratic family of
maps. We have a number of different bifurcations and we will be introduced
to 3 of them during this lecture, ok. (Refer Slide Time: 10:27)
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* In the logistic map, for 0 < r< 1, the fixed
o point 0is attracting, andZbave 1 it is
repelling. —— -
* The other fixed point, 1-1/r, is attracting
in the range 1 < r < 3 and repelling outside

this range.
* Atr=1, the two ‘collide’ and ‘exchange’
stability i

* This is termed a transcritical bifurcation.
* In the bifurcation diagram alongside, the
fived points are shown as a function of

the bifurcation parameter.
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Consider the fixed point at 0; the logistic map so, long as r lies between 0
and 1 the fixed point 0 is attracting, because the slope is r and the slope
is less than 1. Above the value r is equal to 1, this fixed point is repelling,



the second fixed point 1 minus 1 by r on the other hand is attracting in the
range 1 lying between 1 and 3 and it is repelling outside this range. At r
equals 1, both these points at r is equal to 1 the fixed point is 0; in the fixed
point is 0 is always 0 of course, the fixed point at 1 minus 1 by r it takes
the value 0 when r is equal to 1. So, if you draw the locus of the first fixed
point you just get this horizontal line that we have over here that is the x
axis, and the second fixed point 1 minus 1 by r that has it is this second
curve over here. I have drawn in blue, the portion of this fixed point the
region where this is stable notice that on the x axis over here I have the
parameter r. So, the 0 fixed points is stable from r going from 0 to 1 and
it is unstable after this entire range. The second fixed point is unstable for
r going from 0 to 1 and it is again unstable for r bigger than 3, but in this
region it is stable. Now as we change the parameter r from 0 up to 1 and
beyond 1, it looks as if these two fixed points they come and collide with
each other, they merge at this point and subsequent to this point what was
an unstable fixed point now becomes stable, what was a stable fixed point
now becomes unstable. So, they exchange the stability such a bifurcation is
termed a transcritical bifurcation, for r less than 1, 0 would be an attracting
fixed point for r above 1 let us say it the value 2 the fixed point will be 1
minus 1 by r. This pictures that we have on the right hand side is what is
called a bifurcation diagram, where you plot the fixed points as a function
of the bifurcation parameter, you plot the stable fixed points. And then you
indicate the stable or the unstable regions of these fixed points either by
colors or by dots or sometimes just by their being there and not being there.
So, this is one of the simplest bifurcations one can have the transcritical
bifurcation. (Refer Slide Time: 13:57)



* When 1 < r<3, the second fixed
point is stable and attracting. Are
there points of higher period? These
could be found by graphing f"'(z)
and looking for intersections with
the diagonal line.

* One can easily see that there cannot
be any higher order periodic orbits...

®

Now, as you have increased r from 0 to 1, the second fixed point became
stable between r is equal to 1 and r is equal to 3, the second fixed point is
stable and attractive. Now what we would like to know is if this fixed point
becomes unstable beyond r is equal to 3. Are they points of higher period
at all, how do we find them? As we discussed in one of the earlier lectures a
simple way of finding periodic points of higher order is to graph the function
f to the k, the k th the composition of x and look for intersections of this with
the diagonal line. If you do that in this particular case for r lying between
1 and 3, we notice that the black curve over here is f(x), the blue curve over
here is f?(z), the purple curve is f3(x) and I could draw many many more
of them. But you can see that given the fact that f of x is has this parabolic
shape; f 2 of x has two humps, but the depth of this hump is related to how
high the peak is. So, since the peak is not very high compared to the fixed
point, this valley over here is also not very low and you can see that f 3 loops
you know pretty again smooth out that way f 4 will have more oscillations
but always 1 intersection. You can convince yourself by graphing and also
by looking at it a little with some algebra that there can be no higher order
periodic orbits. Because f to the k of x is not going to intersect this diagonal
line except at 0 and at the fixed point of period 1. So, all periodic orbits
are just going to be period 1 orbits repeated many times. (Refer Slide Time:
16:33)



* When 1 < r< 3, the second fixed
point is stable and attracting. Are
there points of higher period? These ™[ ), .
could be found by graphing ['*'(z) ;
and looking for intersections with
the diagonal line.

* One can easily see that there cannot
be any higher order periodic orbits...

+ 50 when will there be an orbit, f(z)
stable or unstable, of period 27 :
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So, one can ask this question when will there be an orbit either stable or
unstable that we can have which has got let us say period 2, period 1 is the
simplest one next one we look for is period 2. So, when are we going to have
a period 2 orbit, to do that we have to keep increasing r or we have to ask
questions related to this family of maps; so, let us look at r near 3. (Refer
Slide Time: 17:02)

Period-doubling bifurcation: Consider the logistic
map near r=3, |s there a point of prime period 2?
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So, here is a graph of the function f(z) and the function f?(x) at r is equal
to 2.9 in this case 3 and 3.2, and the behavior is slightly different even just
glancing at this we can see that there are 2 intersections of this map with
a diagonal which is not a period 1 orbit. So, there definitely is a period 2
orbit at this particular point, but what has happened in between. This is the



so called period doubling bifurcation which occurs at r is equal to 3 and to
understand that let us look at a blow up of this region of this figure, alright.
(Refer Slide Time: 18:00)

Period-doubling bifurcation
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If you look at the blow up of this region, near the figure you see that near the
at the intersection this is the function f of x this is the function f 2 of x and
f 2 of x just smoothly crosses the same point at, it just crosses the diagonal
line transversely over there. The slope over here you can see is clearly the
slope at this particular point for f 2 of x is less than 1, alright. At r is equal
to 3, at r is equal to 3 what we find is that the f 2 of x that is this curve over
here is exactly tangential to the fixed point over here. Its tangential to the
diagonal at the fixed point again there is only a single intersection between f
of x and f 2 of x, but at this point the slope of f 2 of x is equal to 1. At r is
equal to 3 point 2, actually 3 point just immediately after 3, but it is easier
to see if you are a little further away from the bifurcation point, f of x has the
old intersection f 2 of x has this intersection of course, but it also has 2 new
intersections. And these two intersections are purely period 2 points, they
are intersections of f 2 of x with the diagonal they are not period 1 points, so
this is a prime period to orbit. We can also see just by the way in which it
has 1 second let me just bring it back, just by the way in which these curves
are drawn that the slope over here is less than 1 and the slope over here is
less than 1. (Refer Slide Time: 20:10)



Bifurcation diagram for the period doubling
bifurcation

+ Below r=3 the fixed point is
stable. Above r=3, the fixed 1
point is unstable, but the two = eanet = 7 7 |
new fixed points that were xr]
created at the bifurcation are
stable,

repelaig
sy prtrrs oot Hied poat

If xy and rq are the two points of period 2, °
the stabiility of the arbit is determined by

thi¥ghantity [' = |f' ()" (x2)] < 1

So, when the period 2 orbit is born, the stability is determined by the product
of the slopes of this function at the 2 fixed points, at the period 2 points and
that slope product is less than 1 in modulus, so the period 2 orbit is born
stable. So, the bifurcation diagram for this bifurcation looks something like
this. We had a period 1 point which was attracting for r between 1 and
3. Above r is equal to 3 that period 1 orbit went unstable, so we indicate
this in dashed lines over here. Just at r is equal to 3 and above we found
that there were two points of period 2 that were created let us call them
x 1 and x 2, they are the two points that we found over here this is x 1
this is x 2 all right. And these two points are such that the product of the
slopes at these two points tells you the stability of the period 2 orbit and
just add the bifurcation and a little above it the product of these 2 is less
than 1. We will come back to the stability of periodic orbits later on. But
the important point to note here is that at a period doubling bifurcation, a
period 1 orbit becomes unstable and a period 2 orbit is born. So, the period
doubling bifurcation is characterized by the disappearance of an orbit of a
particular period and the birth of an orbit of twice that period. (Refer Slide
Time: 22:12)
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When is there a (prime) period 3 orbit?
Gradually increase ...
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Proceeding along the lines, we can ask when is there going to be a prime
period 3 orbit. Now, we know that period 1 has gone unstable at r is equal
to 3 and period 2 was born, but in order to find period 3 we have to travel
quite a bit more. We travel to the region of r close to the square root of 8 plus
1 why this is and so on will come up in one of the home works. But let us
look at the map near this value of r is equal to square root of 8 plus 1. To find
an orbit of prime period 3, we have to look at the third composition of the
map f of x which we have abbreviated as f to the 3 of x. So, here is the graph
of f 3 of x for square root of 8 plus 0.99, square root of 8 plus 1 and square
root of 8 plus 1.01. Now, you can see from this particular curve this figure
over here, that the third composition of the map has only one intersection
with the diagonal which is the same intersection as the map itself. So, f 3
has an intersection it happens to be the same as the intersection of f which
is 1 minus 1 over r and that is all there is to it, there is no point which is
purely of period 3. But if we look at the map in the vicinity we can see that
this minimum over here is coming downwards towards the diagonal, but it is
not quite touching the diagonal. If we now go to the square root of 8 plus
1, a little expansion of this region shows that this curve is now tangential
to the diagonal the slope here is exactly equal to 1. And as we go above
square root of 8 plus 1 the map now clearly intersects the diagonal twice.
So, we suddenly have two fixed points being created. Now this is the third
composition of the map, so what is happening over here if I may just go back
alright. So, there are two points of intersection here, there are two points of
intersection there and there are two points of intersection here. So, at one
by as the parameter is varied there is suddenly the creation of six new points
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of period 3 and these form 2 different orbits of period 3. Now one of the
interesting things about this particular bifurcation is that when these points
are created as you can see one of them ok; so, at this point the slope of the
map is more than 1. So, this point is going to be unstable at this point the
slope of the map is less than 1. So, the map is so this particular fixed point
is stable. (Refer Slide Time: 25:44)

Bifurcation diagram for the tangent or
saddle-node bifurcation

* Below the bifurcation, there
are no fixed points. At the
bifurcation, there is a single
fined point, but the system is I[T],a
not hyperbalic. 7

-

* Above the bifurcation point <~
there are a pair of fixed scakla brarch
points, one stable and one
unstable. e
®

a:)

Unstatle branch

And this is a characteristic of the so called tangent or Saddle node bifurcation,
that below the bifurcation there are no fixed points. As we saw over here,
there was no fixed point over here a point of tangency and then two fixed
points. So, below the bifurcation there are no fixed points, at the bifurcation
there is a single fixed point which is non hyperbolic and above the bifurcation
point there are a pair of fixed points one of which is stable and one of which
is unstable. In the case of the period 3 map, you will have 1 period 3 orbit
which is stable and 1 period 3 orbit which is unstable. And we will come to
that to discussing the period 3 period 3 orbit when we look at the logistic
map in some more detail. For today what I would like to emphasize is at
the tangent bifurcation or the saddle node bifurcation, you always have fixed
points created in pairs one stable one unstable. (Refer Slide Time: 27:06)
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The mapping Z,41 = 4x,(1 - x,,) has points of all
periods. Fan gl
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it And all of them are unstable...

Notice that the map this quadratic map when the parameter takes the value
4 so, that is
Tpi1 = 4x,(1 — z,,)

Actually has points of all periods and the simplest way to see this is
graphically. If T draw 4z(1 — z) this is a inverted parabola which goes from
0 to 1 to 0, so it completely it is a it goes over the entire interval from 0
to 1. Now if the map itself goes from 0 to 1, f? is going to go from 0 to
1 twice. So, there will be clearly two new intersections in addition to this
one which already was there for period 1. If I go to f3 again because this
map is going up and down as many times as I iterate it, I am going to find
that there will be new points which are created just by the k th iteration of
this map. Now the slope of this map is almost everywhere bigger than one
in modulus. So, it turns out and you can prove it by other means that all
these periodic orbits that this map possesses of all periods all turn out to be
unstable. (Refer Slide Time: 28:30)
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So, for the logistic map on the interval [0,1]

* Forr< 1, zero is the only fived paint. [yl
* For 1< r< 3, 1-1/ris a stable fixed point. "L ‘E{ 7
* There is a bifurcation at r = 3, and period 2 is ‘born’ 11.-? '[)

* Period 3 paints are created at r= 3.8284...

* At r = 4, there are points of all periods, all unstable.

* Above r = 4, some points escape from the interval, namely r, . > |
. S e

+ Any such points will go to —oC under iteration -~

' A
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So, now for the logistic map the behavior on the interval 0 to 1 can be
summarized as follows. For r less than 1 0 is the only fixed point, when r lies
between 1 and 3, we have 1 — % as the stable fixed point and 0 is unstable.
There is the bifurcation at r is equal to 3 and we find that period 1 disappears
and period 2 is born. The period 3 points are created out of nothing at the
point r is equal to 3.8284 etcetera, that is to say the square root of 8 plus 1,
at r is equal to 4 there are points of all periods and all of them are unstable.
Now if r is bigger than 4, then the midpoint at the point half will become
some number r by 4 which is bigger than 1 and if x n is bigger than 1, then
you can easily show that xn plus 1 is less than 1, sorry is less than 0 and
this will pretty soon go to minus infinity under iteration. So, the logistic the
behavior in this logistic map in the quadratic family above r is equal to 4,
there will always be points that escape from the interval. And once x n is
bigger than 1 or x n plus 1 is bigger than 1, then eventually these points will
iterate to minus infinity. (Refer Slide Time: 30:29)
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Natural questions that can arise

* How many periodic points are there for each r 7

* What sequence do the periodic points accur in? We already have
seen that as r is increased, there is period 1, then period 2, then
period 3, and at r= 4, all periods must occur. But is there an order?

* What is the stability of the pericdic orbits?

We turn to such questions next.
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Natural questions that can arise when you are faced with these kinds of you
know these are statements of this is what happens in this logistic map, some-
one could ask that I am sorry prompting you to ask the following questions.
Given any particular value of r I have talked as if there is only one possible
periodic orbit is that true, can there be more than one periodic point at a
given value of r. We also saw that we you know for small r we had period 1,
then we had period 2, then at some point we had period 3 and these were
all you know born stable. But then we also note I also indicated that at r is
equal to 4 all periods must occur, what is the order in which these appear
is there some sequence 1 2 3 4 etcetera etcetera or is it something more in-
teresting and more complicated and we will see that the answer to that is
yes. There is a very natural way in which these periodic orbits occur. And
equally important what is the stability of these periodic orbits, are they you
know we have say that it r is equal to 4 all periods must occur. But all of
them are unstable, are they stable periodic orbits of period k. In the next
lectures of this course will turn to such questions.
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