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Lecture 04
Maps and Flows
Simple Examples of Dynamical Systems

This week we look at Maps and Flows in Simple Examples of Dynamical
Systems. Recall that in the last lectures, some of the vocabulary of the field
of Nonlinear Dynamics was introduced. (Refer Slide Time: 00:32)
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In particular we define what is the dynamical system and showed that this
can be specified either via coupled differential equations, or through iterative
maps. Given any dynamical system, it is important to identify the phase
space and characterize how the motion goes around in the phase space and in
order to do this. First, we would like to know where are the stationary points,
namely those points in phase space where nothing happens. A second way
of looking at the dynamics qualitatively is to graph the vector fields, namely
to see what is the velocity at all points in the phase space and this gives us a
visual handle on how a point might move through the phase space. Looking
at lines where either the velocity in one direction or the other is vanishing, this
is what is called a nullcline. This also gives us great insight into the behavior
of the system and this will become apparent as we go on, but the important
idea was to use was to introduce the idea of nullclines. And, the intersection



of the nullclines gives you the stationary points. In the vicinity of which the
system can be linearized, namely instead of the full non-linear system, we
can replace it by a linear approximation. Analysis of these of the linearized
equations of motion helped us to decide whether the stationary points are
stable or unstable. Because, they depend on essentially on the Eigenvalues
of the matrix of that the corresponds to the linearized system at the fixed
point. So, once you have linearized the system and looked at the stationary
points, you can figure out that they are of various kinds. In one-dimension
they are either stable or unstable, in two-dimensions there are 6 different
possibilities, three of which are stable and 3 of which are unstable. In more
dimensions there will be many many more possibilities, essentially going up
along with the size of the of the phase space. In two-dimensions though we
also looked at some very interesting behavior, namely that of limit cycles,
the dynamics does not start out or wherever it starts out will asymptotically
go to a periodic orbit and, this follows from a very important theorem by
Poincare and Bendixon. So, looking at one in two dimensions, we saw that
there were certain kinds of asymptotic dynamics. Limit cycles, stable spirals,
and stable nodes, were all examples of what are called attractors. Namely,
subsets of the phase space that points within some region will go to under
the dynamics. And, this point this feature of attraction is such that once the
dynamics comes on to an attractor, it stays there which is why the named
attractor. And, that part of phase space from where all initial points will go
to an attractor is called the basin of the attractor. (Refer Slide Time: 04:20)

This week we examine some simple maps
that can have complicated dynamics

* Let us consider iterative maps in 1 dimension, given by
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So, with this background let us start looking at some simple maps that can
have complicated dynamics. There is a very lovely paper by Robert may in



1976 with the title from where that line is drawn. And, in order to do that
it is simpler to look at iterative maps in one dimension. And, they are given
essentially by the following kind of equation, namely that excuse me, namely
that given any point x,; the recipe for going from x,, to z,,1 is to basically
operate by some function. This function f of x is defined in some domain
in one-dimension this could be maybe it is defined on an interval, and let
us consider this simplest case, where it is defined on the interval from a to
b and it is a closed interval in just in this example, different examples can
be drawn. Now, what are we going to be interested in? (Refer Slide Time:
05:39)
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By and large we are interested in the evolution starting from some initial
point; xy we would like to know what happens to xo under the map well as
we have seen given xy over here,

w1 = fwo), 20 = f(z1) = f(f(20)) = f*(20), -
T = [(tn1) = f(fo(w0)) = ['n) (o)

So, x, is given as f(n)(xg). So, once you are given a particular initial
condition one can just plug it in into the set of equations and go on and
find out where is x n, after n steps. Now, there would be some let us just
introduce some propositions, which will help us to now fix some ideas. A
fixed point is such that the iterative the fixed point is itself, namely if f is a
function and f(c) = ¢, then c is a fixed point of f. (Refer Slide Time: 07:05)



Some propositions
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So, it is a pretty obvious thing, but I just like to point it out, because we are
going to use these ideas as we go along. When can we have a fixed point, if,
your function is defined on an interval, it is taking points from the interval
and mapping them somewhere. So, if the interval I is this closed interval a
to b and if f maps I to I, then f must have a fixed point in I. It could have
many fixed points in I, but it must have at least 1 fixed point in I. Likewise,
if f if I is the same closed interval and f is not mapping to the end to itself,
but is mapping to R, then and R is; if f is a continuous function, then f will
have a fixed point in I, if f(I) is a superset of I. So, if f(I) contains I, then
there is going to be a fixed point, a fixed point of f is a zero of the function
g(x) = f(x) — x. So, every time you would like to find a fixed point of f
we write this equation for g(x) and set it is equal to 0, and any root of that
equation will give you a fixed point of f. (Refer Slide Time: 09:06)
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Now, since f(I) is superset of I, let us understand why there must be a fixed
point. Now, f is mapping a, b it is mapping a to b into some region which
is contained inside. So, here is f(a) and here is f(b); now, f(a) >= a and
f(b) =< b. And, therefore, g(a) >= 0 and g(b) < 0. Therefore, somewhere
in between g must be equal to 0, namely there must be some point g(c) such
that g(c) = f(¢) — ¢ = 0 and, therefore, f has a fixed point in I namely the
point c. Notice, that we have also done something you know shown this in
one other way, we have drawn the function f which is here, and we have also
drawn the diagonal line y is equal to x. And, the intersection of this diagonal
line with this function tells us, where is the fixed point. We are going to use
this technique frequently. (Refer Slide Time: 10:42)

Examples 0

Consider the function f(r) = sin(zz) [z .j
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[ has a fixed point in [;see the graph.

* |n fact, there are 3 fixed points, at x = 0 and x=+ 0.7365...

* These fixed peints lie at the intersection of the function (the blue line) and
the line y=x (in yellow).

* These are points of period 1 under the map Tn+1 = [(T4s)

,":) Sinte Ip4) = Iy

So, here is an example consider the function f(x) = sin(rz) and the interval
I =[-1,1], f is mapping I to I and therefore, we know that we have a fixed
point. And, you can visually see that there we do not have just 1 fix point,
but we have 3. And, these three fixed points are given here at 0 and at these
2 values which are plus or minus 0.7365 something, something alright. Now,
these fixed points lie at the intersection of this function namely the blue line,
the blue curve, and this diagonal line y is equal to x which is drawn here
in yellow. And, as you can see these are points of period 1, because at this
point xn plus 1 will be exactly equal to x n, you can see it trivially for x n is
equal to 0, then f of x n is also equal to 0. (Refer Slide Time: 11:52)



We will be interested in orbits of the map, namely starting from
some initial point ro, what s the subsequent itinerary?
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—
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with period n if zj is a fixed point of the map
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—
The point has prime period n if it returns to
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iterations of f.

In general though given some arbitrary function, we are going to be looking
at orbits of the map. Namely starting from some initial point x naught, what
is the subsequent itinerary x 1, x 2, x 3, x 4 etcetera etcetera alright. Now,
if your initial condition comes back to the starting point after n iterations,
then x naught is said to be a point of period n; namely, if f to the n of x
naught is equal to x naught, x naught is a periodic point of period n. In
other words x naught is a fixed point of the function g of x is equal to f to
the n of x. So, a periodic orbit of f is a fixed point of the map g of x, which
is the nth composed map. The point is said to have a prime period n, if it
returns to the starting value for the first time after exactly n iterations of f.
This is to cover yourself from you know, because any point which is a fixed
point, will also be back at the same place after 2 steps, after 3 steps, and
so on. So, we want to make a distinction between points that return after
every step or points that return only after n steps. And, clearly we are more
interested in those points that will return, after exactly n steps rather than
any other condition. (Refer Slide Time: 13:49)
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So, now let us look at the same map that we had observed, namely f(z) =
sin(mz), and ask what are the fixed points we already know that there are 3
fixed points of period 1, ok; so, a fixed point is a point of period 1, because
it comes back to itself after 1 step. To find higher order periodic orbits,
we need to look at as we have seen over here, they are fixed points of the
nth composed map. So, if I am interested in looking at points which have
got period 2, T have to look at the map f?(x) = f(f(x)and in this particular
example, it is sin(sin(mz)). Now, this is a function which looks like this green
curve that you see over here. The purple curve is your original 1, which is
sin pi x and the green curve is f 2, which is f of f of x. Now, as you can see on
this particular graph just a second let me get the laser pointer out. As you
can see over here, this is a fixed point of period 1, it is also a fixed point of
period 2. This is a point of period 1 and also; obviously, a period 2 as is this
last point over here both points of period 1 as period 2. What is new over
here are these four points 1 2 3 and 4, which are intersections of this curve
f?(x) namely f(f(x)) with the diagonal line. So, these are fixed points of
the twice composed map, on and they are the intersections of this map with
the diagonal line f(x), I am sorry with the diagonal line y = x. Now, there
are 7 such points of intersection of this particular curve excuse me, there
are 7 such points of intersection between the green curve that is the twice
composed map with the diagonal, 3 of which are period 1. So, we discount
these, but there are 4 new points which are of period 2. And, these points
have got prime period 2. Now, any period 2 orbit must have 2 points in it is
composition; namely if I have got x naught and then I have got x 1 which is
f of x naught and x 2 which is f 2 of x naught is equal to x naught. So, I need



two elements on a period 2 orbit and, therefore, these 4 points which have
got prime period to form 2 distinct periodic orbits which have got period 2.
So, a combination of graphical analysis and a little simple arithmetic over
here tells us, that this map not only has got period 1 points and it is also got
period 2 points, and we can see now how to get points of any period that we
desire. Either by solving an algebraic equation, solving this equation that is
sin pi x sin pi x is equal to x, this particular equation is somewhat difficult
to solve. So, you know 1 cannot do it without numerical techniques, but
visually and graphically when can easily see that one has the following fixed
points. And, one can also identify as to where they are, this one lies below
minus 0.73, the next one is between minus 0.73 and 0 and so on and so forth.
Now, given these various fixed points, one can see that there either stable or
unstable depending on the slope of the function at these fixed points. And,
we can do the analysis and we will have to do that algebraically. But one
can also identify an important feature of these of these fixed points, and this
is to ask what is the stable set of a given fix point. (Refer Slide Time: 19:01)
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In order to understand what the importance of the stable sets are let us
consider a slightly different map a simpler 1, and I will take the case of
f(x) =| * — 2 |. Now, clearly the point x is equal to 1 is a fixed point
associated with any periodic orbit or with a fixed point is the notion of a
stable set. Namely, what are all the points that are eventually attracted to
this particular periodic point? In order to introduce this particular notion,
let us look at a simpler example; the example of the map f(z) =] x — 2 |.
Now, clearly for this function 1 is a fixed point, because f of 1 is 1 minus
2 is equal to minus 1 modulus of that is 1 so, 1 is a fixed point. You can
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also see that the 0.0 and 2 these integers, they will form a periodic point a
periodic orbit of period 2, because f of 0 is equal to 2 and f of 2 is equal to 0,
therefore, f 2 of 0 is equal to 0 and it is a periodic orbit. Now, just looking
at the integers on the line we note that under this map all the odd integers
either positive or negative are attracted to 1. We start with 7, from 7, I go
to 5, from 5 we go to 3, and from 3 you go to 1, and 1 we know is a fixed
point. On the other hand if I start with minus 3 I go to 5, then I go to 3
and then I go to minus y, then I go to 1 which is also the fixed point. So, all
and you can see that all the odd integers are going to do this whether they
are positive or negative. On the other hand all the even integers positive or
negative are attracted to the periodic orbit 0 and 2. If, I start with 8, I go
to 6, I goto4, Igoto2, Igoto0to0and soon and so forth. On the other
hand if I start with minus 4, I go to 6 minus 4 minus 2 is minus 6 modulus
is 6, which then goes to 4, then goes to 2 to 0 2 to 2 0 and so on and so
forth all right. The stable set is the set of all the points that will either go
to the fixed point or to the periodic orbit. So, to be mathematically little
more formal if f is a function and p is a periodic point of prime period k so,
one has got period 1 and 0 and 2 have got prime period 2, then the point x
is said to be forward asymptotic to p. If, this sequence x, f k of x f to k of
x etcetera, converges to p namely the limit of f to the n k of x goes to p as
n goes to infinity. The stable set of p is denoted W s of p and it consists of
all the points that are forward asymptotic to p. So, if I start somewhere and
I keep iterating and I eventually land up at a particular fixed point, then
that point belongs to the stable set of the fixed point. So, in this particular
example W s of 1 is the set of all odd integers. The idea of the stable set
of a fixed point and later on as we will see the idea of an unstable set also
of a fixed point. These are important in the theory of non-linear dynamical
systems and we can see it we introduce very simply over here. (Refer Slide
Time: 23:45)
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I have already introduced you to the idea, that graphical analysis is a powerful
way of analyzing some features of the dynamics. We saw that looking at the
intersection of the function f and the diagonal line, made it very easy for
us to identify the fixed points. Now, you can do a little more than that.
Supposing, I would like to know how does a, what is the orbit of a given
in you know initial point. One very simple way to do this is through such
you know through graphical analysis in the following way. So, you draw the
function f of x and you draw the diagonal line. So, you draw the function f
of x and you graph the diagonal line y is equal to x. The intersection of the
function and the diagonal line will tell you where the fixed points are. How
does the point; as the how does the initial condition a iterate, well you start
with the point a on the diagonal and you draw a; you draw a vertical and
go up to the point where you intersect the curve. So, you draw the vertical
line from a to this is the point a and you draw it to a f of a, and that will
tell you what is the next iterate a and then f of a. Where does f of a iterate
to find that, we need to iterate from the diagonal point f of a, f of a and see
where that goes and that goes to the point f of a, f 2 a. And, clearly now
you can continue and find out where f to a and we will iterate by drawing
the horizontal line to the diagonal, and then again dropping to the curve
and then going to the diagonal etcetera alright. So, this is a very simple
rule you start at the diagonal point go to the curve, go to the diagonal, go
to the curve, go to the diagonal, go to the curve and so on. Starting close
to a fixed point, but not at the fixed point because the fixed point iterates
onto itself, but starting close to a fixed point and continuing the iteration
can immediately tell you whether that fixed point is stable or unstable. So,
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this graphical analysis of the orbit of the point a under this iteration, which
is x f of x is x cubed, tells us that this 4 point fixed point x is equal to 1
is unstable, because any small displacement from there will just move away
move downwards towards this second fixed point which is 0, which is stable.
So, the iterates over here will approach the fixed point 0 in this above case .
So, you start anywhere you will come down to the origin same it goes if you
started somewhere over here. (Refer Slide Time: 27:05)
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Now, this graphical analysis is actually quite powerful, because it gives you
an instant feel for how things are. And, in another example which we have
over here I have taken this function f of x is equal to minus x to the one-third
both these examples are taken from the book by Holmgren. This function
as you can see is this particular curve over here in dark and if I start close
to the origin at the point a, I start from the diagonal I go to the curve, I go
to the diagonal I go to the curve, I go to the diagonal I go to the curve and
you can see that I am spiraling outwards. But then I spiral out to another
side to a cycle, which is shown here and sort of is getting darkened by the
emphasis. So, f 6 is almost a fixed point over here, but it is now a fixed point
that will iterate from the diagonal to the curve, to the diagonal, to the curve,
back to itself. So, it goes to a period 2 point. So, and this period to point
is the point minus 1, 1, minus 1, 1 this is your periodic orbit of period 2.
Close to the fixed point over here, the local dynamics depends on the slope
of the function near the fixed point. As we saw in the earlier lectures, the
map near a fixed point can be approximated by the linear map xn plus 1 is
k times x of n, where k is the derivative of this function evaluated near this
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fixed point p. It is easy to see now, why points move in or out away from
a fixed points depending on the slope. And, you can do that by examining
just the simple example over here of linear dynamics near the fixed point.

(Refer Slide Time: 29:19)
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So, over here I am taking the case k less than 1, which we know in modulus
which we know from our earlier discussion to correspond to a stable fixed
point. If, the slope of the function is less than 1 and positive, then you can
see that if I start at this point over here, I start on the diagonal, I go to the
curve, I go to the diagonal, I go to the curve go to the diagonal outwards,
and as you can see I am just very quickly going to the fixed point of x is equal
to 0. If the slope is less than 1 in modulus, but it is a negative slope, then
you can again see that if I start at the diagonal I go to the curve, go to the
diagonal, go to the curve and I am now spiraling inwards to this fixed point.
On the other hand if k is bigger than 1 in modulus, then if I start close to
the fixed point, I very rapidly start moving outwards and we will just move
far away from the fixed point. On the other hand if I am close to if the slope
is negative, but bigger than 1 in modulus, then starting over here it is pretty
clear that I have to spiral outwards. So, the slope of the map near the fixed

point determines whether or not the dynamics is going to be stable. (Refer
Slide Time: 31:09)
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Near a fixed point p in any map
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the dynamics appears linear,
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Ingl = A‘.i';r. where k= E i Bmmhm&
r— — "= jessthan 1 inmagnitude)
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hyperbolic if
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So, near a fixed point p in any map the dynamics appears linear, and this
linearized dynamics is represented by z,.1 = kx,, where k is just the value
of the derivative at the fixed point. If, k& =| 1 | the fixed point is termed
hyperbolic. And, this is an important idea to have, because if the fixed point
is hyperbolic, it is either attracting or repelling, if the slope is less than 1 in
magnitude, it is going to be attracting, as we saw over here, if the slope is
less than 1, you either just go in dive in or spiral n. If the slope is bigger
than 1 you zoom out or spiral outwards. And, both these behaviors or let us
say that so long as k is not equal to 1, the system is said to be hyperbolic.
(Refer Slide Time: 32:14)

+ If a fixed point p of a given map is hyperbolic, then one of two things
should happen:

* There must either be a neighbourhood of p that is contained in the
stable set of p, namely W *(p), or there is a neighbourhood of p, all of
whaose points must leave the neighbourhood under iteration of f.

* In other words, such a fixed point must be either an attractor or a
repeller.
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So, the; to just to reiterate, they must either be a neighborhood of this fixed
point that is contained in the stable set of p namely W s of p or there is
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a neighborhood of p all of whose points must leave the neighborhood under
iteration of f. In other words such a fixed point must either be attracting or
repelling. (Refer Slide Time: 32:37)
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In case the system is non-hyperbolic, where the slope is exactly equal to
1, then it turns out that you can have a different types of behavior noting
generalizable, but something which you know which has to be looked at from
each case. So, here are 3 examples where the slope at the fixed point the
fixed point is the origin and, it is exactly equal to 1 in all these 3 cases. If,
I take the first example which is this purple curve over here. The purple
curve and you can see that this is the diagonal line that I have also drawn
in brown I think ok. So, the point is attracting from both sides. If, I take
this function e — 1, which is the yellow curve then from one side the slope
is less than 1. So, it is attracting and from the other side the slope is bigger
than 1 so, it is repelling. And, in the third example over here I am sorry it
is sort of it is repelling on both the sides and then the third example over
here, if the slope here is less than 1. So, it is attracting and over here it is
bigger than 1 so, it is repelling. So, again you have this rather complicated
behavior, which is neither attracting or repelling and this is typical of what
happens in the hyperbolic case alright. (Refer Slide Time: 34:05)
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Analogous conditions hold for periodic points,
with the requirement
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Now, analogous conditions also hold for periodic points with the requirement,
that the derivative of | £ f*¥)(z) | and this fixed point or in this periodic
point, that should not be equal to 1, for a point p of period k to be called
hyperbolic. For a fixed point p of period k to be hyperbolic, there is an
analogous condition that will hold. Namely, that the derivative of the k th
composed map, evaluated at the periodic point that derivative should be less
than 1 or should be different from 1 in absolute magnitude. Now, how does
one take the derivative of the k th composed map, that is done very simply
using the chain rule for differentiation. (Refer Slide Time: 34:55)

From the chain rule for differentiation, note

Thus if
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Note for example, that



from the chain rule and I am the notation over here is I am putting a prime
on the f prime k of x, from the chain rule this is just equal to f prime of
f k minus 1 of x times the derivative of f k minus 1 times of x. Now, this
of course, is the same as this 1 with k going to k minus 1. So, recursively
if we come down, we know that this is the product of j going from 0 to k
minus 1 of f prime of f j of x. Thus if you have x 0 x 1 x 2 etcetera all the
way up till x k minus 1 and x k is equal to x naught as a periodic point of
period k. Then, f'*)(z) evaluated at g is just the product of f’(z) each time
evaluated at z;, j going from 1 to k-1. So, evaluating the derivative of the
k th composed function is multiplying the derivative of the function at each
of the k points along the trajectory. We are going to use this frequently in
other applications, but and we will see it is utility in when we start discussing
different examples. (Refer Slide Time: 36:48)

—_—

In the next lectures, we look at some
standard examples of iterative maps.

In the next lecture we will look at the Bernoulli map and subsequently we
look at the tent map or the logistic map, these are very standard examples
of iterative maps, which have been studied extensively since the 1970s and
we will turn to this in the next lecture of the series.
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