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Hello in todays lecture we will look at flows in two dimensions, look at
fixed points, what kind of fixed points one can have and other kinds of limiting
behavior that one can have namely limit cycle attractors. And finally, we will
discuss the Stability of such objects. To start with let us just recap what we
did in the last lecture in the last lecture we looked at flows in the on the plane
and we looked at both linear and non-linear flows and by analyzing in some
detail the linear flow in two dimensions, we found that there are basically
six kinds of fixed points; three of which are unstable namely the saddle, the
unstable node and the unstable spiral and then we have the stable node, and
the stable spiral and the center which is a kind of marginal behavior. (Refer
Slide Time: 00:34)

the stable node,

stable spiral, and the Dfferent types offxed ponts depending on the egenalues of
rantre. thee Lacobsan matris

These fixed points depend on the eigenvalues of the Jacobian matrix and for
a two dimensional linear flow where you have the Jacobian matrix having
trace tau and determinant delta, the behavior in this tau delta plane can
be essentially broken out into these regions. If tau squared is greater than
4 delta, one has unstable nodes and depending on the magnitude of the
eigenvalues you can have unstable nodes. If tau squared is less than 4 delta,
one has the stable behavior. If delta is negative and one has saddles and if



delta is positive one can either have a center or stable and unstable spirals.
So, these are the kinds of behaviors that one can find for systems on the
plane. Now, although the analysis was done based on the linear equations
we found that for non non-linear systems, you could repeat this analysis
quite easily by first finding the equilibrium points, linearizing around the
equilibrium points and then identifying the behavior at these equilibria and
use continuity to sketch phase curves. (Refer Slide Time: 02:39)

For nonlinear systems, find the equilibrium points,
linearize, and use continuity to sketch phase
curves.

+ Trajectories always tangential to the vector field

* |nitial value problem: Uniqueness of orbit from a given initial
condition.
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By this I mean and be illustrated this the last time that just as in one dimen-
sion between any two stable fixed points there must be an unstable point,
between any two unstable fixed points there must be a stable point. In the
same way not all of these kinds of the behaviors are compatible with one
another and one can easily find out how to make a continuity work for you
in sketching phase curves. We will take up some of these issues in the home-
work assignments and so on which we will be discussing subsequently. The
important part to remember is that frequently and in the more complicated
non-linear systems, it is almost always necessary to use computational tools
and trajectories and use computational tools in a variety of ways. One can
have the computational tool to sketch the vector fields and any trajectory
of the system has to be tangential to the vectors at that point. The sec-
ond thing that helps us especially when doing numerical calculations is that
through any point there can be one and one trajectory. So, this is I mean
you remember that this is an initial value problem and therefore, the orbits
are unique. (Refer Slide Time: 04:38)



Consider the linear flow

The system can be solved easily to give
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Let us look at some specific examples, partly for illustration, but also partly
to introduce a concept of attraction. If we look at the linear flow and it is a
very simple one

T =—-x

y=2x—2y

, using the tool that I pointed out in the last lecture there must one can draw
the vector fields and the vector fields are actually pretty the straightforward
and you can see that everything is pointing inwards. A little analysis will
show you that this is a stable node and the equations are so simple that one
can actually write down the solution. So, the first one is simple enough and
one has just a second while I get my pen on right; so, the first one which
is © = —ux is easily solved to give us this exponentially decaying solution
for x. Putting that into y and solving that gives us another rather simple
solution for y. Now, seeing that you have got an exponential factor over here
of €7 and e* over here, as t — inf clearly x(t) is going to go to 0 and
y(t) is also going to go to 0 regardless of the value of x naught or y naught.
Therefore, starting anywhere, you will come eventually to the point (0,0).
If you start over here you will go to (0,0) and so on and so forth ok. So,
the point 0 seems to attract all initial conditions coming from wherever you
are wherever you find yourself initially eventually you will always land up
over here. Now, the question of tangency to the vector field at all points is
important. So, this orbit that I have drawn over here is actually tangent or
at least in my approximation it is always tangent. And these other orbits are
not tangent so, you will you will see you can easily prove for yourself that a



valid trajectory must follow these flow lines and come to the origin which is
the attractor. (Refer Slide Time: 07:21)
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Again, as t = o0, 2(t) = 0
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In this case, spiraling inwards,

Now, if you looked at another system and here I have chosen it differently
T=1
y=—4x -2y

. Analysis will show you that this is a stable spiral and again the solutions
are not too difficult to determine. Here they are here are the solutions for
you;

x(t) = mpe"

multiplying some oscillatory some trigonometric functions and wide y has got
e to the minus t again multiplying another bunch of trigonometric functions.
And without much more than just inspection you can see that as t — oo
x(t) and y(t) go to 0. But in this case they are; obviously, now going to be
spiraling inwards all right. So, again we find that the origin 0,0 is the limit
for all orbits in the plane. No matter where we start from you are going to
eventually go down to 0,0. (Refer Slide Time: 08:38)
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Now, in both cases therefore, regardless of initial condition the trajectory
eventually goes to the only fixed point of the system, which is the origin.
And in both cases this was and this is why they were chosen as examples
here these are stable nodes; both the origin in both the examples is a stable
node. When one case is just a simple stable node in the other case a spiral.
The origin therefore, can be said to attract all initial conditions and it is
termed a point attractor because it is a point. Now, given that you have got
a plane and if it is a linear system there is only one fixed point then as we
have seen this analysis over here there is only one type of attractor namely
a point attractor. And the question which is of interest and has been of
interest for over a 100 years is that in the plane if your equations of motion
are non-linear are any other kinds of attractors possible and it there was a
very important result in this area and its known as the Poincare-Bendixson
theorem and which basically says that in addition to a fixed point attractor

you can also have another kind of an attractor which is a cycle. (Refer Slide
Time: 10:01)



The Poincaré-Bendixson theorem
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We will briefly discuss the Poincare-Bendixson theorem just using the salient
parts of the theory of the theorem without being very rigorous about the
proof. In fact, the proof requires some very serious mathematical analysis
but let me just try to give you a flavor of what this theorem attempts to
prove. So, in its simplified version the Poincare-Bendixson theorem says
that if you have a non-linear flow in two dimensions and here is an example
of a non-linear flow in two dimensions very general; if in the fine in a finite
region of the plane which is the phase space of this particular problem ok,
we consider two curves C1 and C2 and the C1 and C2 are of the following
kind, the vector field specified by the right hand side of both these equations,
at each point of C1 the vector field points inwards and at each point of C2
the vector field points outwards ah, but into this annulus. So, all along the
curve C1 we have the vector fields pointing inwards, all along the curve C2
we have the vector fields pointing outwards and furthermore if this annular
region over here, if this region which is just call it R, if this region R does
not contain any critical points then the Poincare-Bendixson theorem says
the system has a closed trajectory lying inside this region and this is a limit
cycle. It is a limit cycle, because the vector field points away from here and it
points away from here and so, the curve that is lying in between is a limiting
behavior in some sense and this is a very important result showing that you
can have other kinds of attracting behavior. (Refer Slide Time: 12:28)
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Now, the Poincare-Bendixson theorem has been used to show that that you
know that various systems can have limit cycles and here is a very standard
example. So, if you consider the following 2 dimensional flow and this is a
non-linear system now, all right you can by inspection see that 0,0 is a fixed
point. Now, for small x squared plus y squared namely x squared plus y
squared describes a circle around the origin so, it is around 0 0. So, for as
around the circle of very small radius around the origin the system more or
less looks like ax — y for this equation and x + ay for this equation, where
a is some number which is less than 1, because its 1 minus R squared. So,
we choose it R square to be less than 1 and you finally, you find that these
are the equations more or less what the system looks like namely 0,0 is an
unstable spiral. More importantly on the circle which is got radius square
root of 1 minus a what you find is that all the points, because it is an unstable
spiral at the center all the vector fields are pointing outwards. On the other
hand if you go to a very large circle and circle which has got radius much
larger than 1, then x squared plus y squared is a number which is bigger than
1 and this term is negative. So, it looks something like

T =-—y—ar

y=r—ay
and again little analysis will show you that (0,0) in this scenario is stable
spiral; which is to say that on this larger circle around the origin all the lines
the vector fields are pointing inwards, because it is a stable behavior. And
now this has got exactly the condition that the Poincare-Bendixson theorem
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requires. Namely you have two curves this is C1 and this is C2. Along C1
the vector field points n along C2 the vector field points out. Therefore,
somewhere in between along every radius there must be some point that
neither goes in or out and you know connect all these points you get yourself
a limit cycle. (Refer Slide Time: 15:25)
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You can simplify the analysis a little by just considering polar coordinates
and if you use polar coordinates you can see that this equation this non-linear
equation over here reduces to the following coupled equations well. It is not
quite coupled, the motion in theta is very simple, because you can integrate
this and this just says that theta is time and this these two equations reduced
to r dot is equal to r into 1 minus r squared. Now, one can clearly see that
this looks like a one dimensional equation for the radial coordinate. But
when considering this one dimensional equation, I have got two fixed points
on this in this one dimensional equation these are actually two fixed circles if
you like. One of them has got radius 0 so, it is just a point and the other one
has got radius 1 and both these are fixed circles if you like. Now again doing
the analysis namely looking at the derivative f prime of r, if you look at f
prime of r at r is equal to 0 you find that 0 that that the derivative is equal
to 1, positive number and there 0 is an unstable fixed point or an unstable
circle and again doing the same analysis f prime at r is equal to 0 turns out
to be negative. And therefore 1 is a stable fixed point a fixed point namely
a stable circle and orbits look like this namely if you start from inside the
circle of radius 1 you will spiral outwards until you hit this circle. If you start

from any point outside the circle of radius 1 you will spiral inwards until you
hit this cycle. (Refer Slide Time: 17:25)
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Proving limit cycles is more difficult than
proving there cannot be limit cycles...

A system cannot have a limit cycle if

1. Itis conservative
2. Itis a gradient system

3. It admits a global Lyapunov function L{x, y) for which
either L'{t) > 0 or L) < 0 everywhere, except at at
c isolated points (which are fixed points).

I-."1i 5

So, this helps us to understand that on the plane you can have somewhat
more complicated behavior than just a fixed point and a fixed point which is
either stable or unstable or a saddle or a center or whatever. Now, to prove
that you have a limit cycle sometimes is more difficult than proving that they
cannot be a limit cycle. It turns out that there are many situations in which
without doing any analysis and without even trying to prove the Poincare-
Bendixson theorem for your system, you can show that a system cannot have
a limit cycle in the following situations. One that it is a conservative system,
that is there some conserved quantity. Two that it is a gradient system and
I will get to that in a moment and three that it admits a global Lyapunov
function L(x,y) for which either L'(t) > 0 or L’(t) < 0 is negative everywhere
except at isolated fixed points. So, what is what are these various conditions?
Conservative I will come to subsequently, but first let me look at what is a
gradient function. (Refer Slide Time: 18:50)



Gradient system: Existence of a functinnf@u
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A gradient system is one where there is a function V, such that the
equations of motion that namely

71 = fi(r1, x2)

Ty = fo(x1, 22)

these can be written as the gradient of some other function. This is very
similar to the way in which potentials are introduced, but this is not quite
the same thing right. You will also notice that I go back and forth between
the notation x,y for the coordinates on the plane and x1,x2 some of it is
deliberate and some of it is for convenience of notation because sometimes
I need to use a bold vector x and so on and so forth, but I hope that this
should be straightforward and clear. Now, if there is a function V which
whose derivative is the these functions fl1 and f2 whose partial derivatives
and these two different variables is x1 and x2, consider that we have a limit
cycle. Now, this limit cycle is a is some kind of an orbit that goes back around
its and meets itself. So, at time t equals 0 it is at the position x where we
started out and after time t you come back to exactly the same point and
so, this function V takes exactly the same values. But now let us look at the
derivative of V as a function of time. Because of these relationships

vV, vV,
dt_8x22 81’22

and this is negative definite. So, on a periodic orbit this cannot be true
unless both the velocities that is this and this are equal to 0 and if both these
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velocities are 0 we were already at a fixed point and it is not a limit cycle.
So, this kind of excludes the whole class of systems, all gradient systems from
having any limit cycles because of this condition. (Refer Slide Time: 21:20)

Lyapunov function
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The Lyapunov function and Lyapunov is the name that you will come across
quite often in a course in on chaos theory or on or non-linear dynamics or
dynamical systems. So, if the Lyapunov function was introduced by the
Russian mathematician Lyapunov and basically it is the following; if there
is a fixed point of the system let us call that x star, a Lyapunov function
is a function V(x) such that at the fixed point V(z*) = 0 . Now for all
other points in the domain of this dynamical system V of x is positive and
its derivative is negative. So, in some sense it looks like some kind of a
little parabola or paraboloid around this fixed point. If you can find such
a function which is well defined in your dynamical system, then x star is a
globally asymptotically stable is globally asymptotically stable fixed point
and this system cannot have any cycles it cannot even have a closed orbit
because everything is going is falling downwards. So, to speak everything is
just flowing down, because this derivative is negative. Now finding Lyapunov
functions is not as simple as all that and in fact, Strogatz says that you
know some kind of divine inspiration is probably needed, but more or less
quadratic type functions, whenever people have been successful in finding
Lyapunov functions they have had this general shape ok. (Refer Slide Time:
23:29)
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Recall the formula for change of variables in
an integral
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Now, we just take a brief break over here to recall to remind everyone about
the formula for change of variables in an integral. In one dimension if you
have this integral G of y dy limits being a and b. If you want to change from
y to the variable y to the variable x where you define y is f of x and x as G of
y, then this is the standard form for the change of variable. In two dimensions
if I have got the variables x and y on the one hand and u and V on the other
hand and x and y are defined like. So, as and u and V are defined sort of
in terms of x and y and these kind this through this relationship, then any
integral f of x y taken over the region in the x y plane so, it is a it is an area
integral over here. When I transform to the u and V variables of course, I
have got to change x and y in terms of the arguments over here, but also
importantly I have to add the Jacobian of the transformation namely this
determinant. Now, this is standard calculus so, I am not going to actually
sit and try to derive it out, but I just want to remind you about this for the
following discussion. (Refer Slide Time: 25:09)
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How does the area change under a flow?
) The change factor in area is given by the
Jacodian
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If T have got a flow

Ty = fo(x1, 22)

the usual flow that we have been considering it is just a simple non-linear
flow. How does any area change alright? So, I want to take some unit area
and ask as my system obeys these following equations, how does the area
change? Now, in order to do that I can just I can do the analysis as follows,
at a later time x1 at time t plus delta t this is just going to be approximately
I mean to leading order, because I am not going to take all the terms in the
expansion. It is x 1 plus delta t times x 1 dot plus of course, you would have
delta t square by 2 factorial x double dot and so on and so forth, you would
have all those are the terms. But I am not considering any of those and let
me just take this to be the simplest one the first term over here. So, similarly
x 2 at a time t plus delta t is just x 2 plus delta t times f 2 of x 1 and x 2, or
I can rewrite this as in terms of the old coordinates x 1 and x 2 and the new
coordinates x 1 prime and x 2 prime, I can write this as the following linear
equation. Now, if I am going to change you know so, I have got an area and I
have got the flow equations going moving and moving me in some direction.
So, as I change what happens to an unit area? We have seen this formula
for the change of area except now x and sorry u and V and x and y are all
the same really except now we have to add this namely the Jacobian of this
transformation. And this Jacobian you can easily calculate it is written as
so, the new variables in terms of the old variables taking that Jacobian gives
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me a factor of 1 plus delta t times partial of f 1 with x1 plus partial of f 2 with
respect to x 2. I am sorry about the mistake over there, but I will correct
that subsequently, plus of course, higher order terms which I am going to
ignore, because I am doing it to leading order. Now, therefore, this volume
A or an area A will transform to a new area A prime by this multiplicative
factor. A prime is just A plus A times delta t times partial of f 1 with x 1
and partial of f 2 with respect to x 2. Or rewriting this by moving this over
onto this side and dividing by delta t taking limits ecetera, the rate of change
of area in the plane is given by A times the divergence of this vector field f
which is specified by f 1 and f 2. Now, this is a very important formula and
it generalizes in any number of dimensions where you could just write down
that dV by dt excuse me will be given by the divergence of this vector field
times V. And this says that the area or the volume more generally the area
changes at an exponential rate where this exponential factor is given by the
divergence of this vector field. (Refer Slide Time: 29:34)

* Thus, if the divergence of the vector field is negative the area will
shrink , if positive, it will grow. If zero, one has a conservative system:
the area remains constant.

* To have a limit cycle, one needs that the area should decrease; thus,
conservative systems do not have any limit cycles.

+ Hamiltonian systems are conservative, and therefore have no limit
cycles.
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If the divergence is negative this means that the area will shrink. If the di-
vergence is positive the area will expand and in case one has a conservative
system the area remains constant. Namely the divergence of this vector field
is 0. To have an attractor or to have a limit cycle one needs that area should
decrease; namely you want some kind of contraction to keep happening there-
fore, conservative systems do not have any limit cycles. Hamiltonian systems
are conservative, and they are very large and important class of systems that
we are interested in dynamics and therefore, in Hamiltonian systems there
are no limit cycles either. (Refer Slide Time: 30:29)
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Attractors and Stability @

* An orbit x is termed an attractor if trajectories starting from within a
neighbourhood of x converge to ityllylt] 3 x(t)] 2 0as { — ¢
* It s a global attractor if ol other trajectories converge to it as ¢ —

* An equilibrium is said to be Lyapunov stable if any orbit starting out
nearby (say within a distance & from it) will remain nearby forever
(within a distance €); for any specified €, there will be a 6.

+ It is asymptotically stable if it is Lyapunov stable, and if fy(t) - x{t}] =
Dast— o0 e

+ |t is exponentially stable if the convergence is exponentially rapid.

Some final discussion on attraction and stability, these two concepts are
slightly different from one another. You can have an attractor which is not
necessarily stable in certain technical senses that we will discuss momentarily
and you could have stable systems which are not necessarily attractors. So,
in orbit x and this orbit could be a point, it could be a limit cycle. An
orbit x is termed an attractor if trajectories which start from within some
neighborhood of x converge to it. So, if y is in the neighborhood of x, as time
goes to infinity, y of t minus x of t will go to 0 and that tells you that x is
an attractor and this is true for all y lying inside some neighborhood. If all
the trajectories converge to this attractor regardless of where you start from,
then the attractor is global otherwise it is a local attractor. Now, as far as
stability is concerned, let us just discuss the stability of an equilibrium point.
An equilibrium point is said to be Lyapunov stable or stable in the sense of
Lyapunov, if any orbit starting out nearby let us say within a distance of delta
from this particular equilibrium point will remain nearby forever within some
distance epsilon. And for any specified epsilon there will be some delta. So,
we have a fixed point and here is some region of radius delta, all orbits that
start within delta will stay within will eventually get to a region around this
fixed point within a distance of epsilon and will always stay inside epsilon.
So, it is not as if all the orbits attract if this excuse me it is not as if all
the orbits will go to the point x, as in the case of an attractor, but it is
also stable in the sense that it will always be close by. In case it does go
to 0, then its termed asymptotically stable and if the rate of convergence is
exponentially rapid it is termed exponentially stable. So, this brings me to
the end of this particular lecture, where we have discussed notions of stability
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of attraction and seen certain examples of what kind of behavior is possible
in the plane. Almost everything that I have said today is particular to the
plane except for a few things which will come back in subsequent lectures.
So, in the plane we can have only two kinds of behavior; we can either have
I took as a behavior asymptotically which are attractive ah, namely you can
either have an at a fixed point or you can have a limit cycle. You can have
cycles you can have orbits that are not closed, you can have all sorts of other
things. But basically, the two-dimensional systems do not have any more
complicated kind of dynamical behavior. In order for there to be something
more complicated we need to increase the dimension and that we will do in
subsequent lectures of this course. Thank you.
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