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Hamiltonian Chaos 2.

This is the second lecture on Hamiltonian Chaos and in the previous
lecture we had discussed the Poincare-Birkhoff and KAM theorems. (Refer
Slide Time: 00:27)

The Poincare-Birkhoff theorem and the KAM theorem addressed the fate
of Hamiltonian systems when non integrable perturbations are added to an
integrable part. When you have an integrable Hamiltonian and it is denoted
here by H0 then all the motion lies on tori because this is integrable and the
entire phase space is covered by tori each of which is indexed by particular
values of the actions.

H̃ ′ = H̃0 + εH̃1

To this integrable part if we should add a non integrable term such that
the whole Hamiltonian is now non integrable, then the Poincare-Birkhoff says
something about those tori on which the dynamics was periodic namely the
rational tori. What the Poincare-Birkhoff theorem says is that these rational
tori are destroyed and they leave behind a set of 2 times s times k fixed points
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that is an even number of fixed points alternately being stable and unstable.
So, you have a stable fixed point followed by an unstable and so, on and
so forth. There is even number of them and how many of them depends
on what the what is the winding number or what are the ratios of the 2
frequencies on which correspond to the 2 different directions on this torus.
The example over here and many of the examples we will talk about for 2
degree of freedom Hamiltonian systems and that means, that the sections the
Poincare sections that we are examining are 2 dimensional. So, starting with
a rational torus marked here once you add this non integrable perturbation
this rational torus evolves in a particular way so, that all that we are left
behind are these fixed points 2 of which are stay unstable and 2 of which are
stable. (Refer Slide Time: 03:23)

The KAM theorem addresses the quasi periodic or Tori namely those tori
on which the frequency ratios are irrational and this is the vast majority of
tori even in the unperturbed system what the KAM theorem says is that,
if the sub the system is sufficiently non-linear that is to say H naught itself
is sufficiently a non-linear system if the torus is sufficiently irrational by
which we mean that the ratios of the frequencies omega 1 by omega 2 is
and is sufficiently irrational or is poorly approximated by rational numbers.
So, that is poorly approximated by rational numbers and if the coupling is
sufficiently small, then the torus will survive in the perturbed system or in
other words there will be an invariant torus of the perturbed system that is in
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a sense close to the torus of the unperturbed system and as the perturbation
term vanishes, these will merge into each other. The implication of the KAM
theorem are best understood for a 2 freedom system. So, and we will turn
to that now. (Refer Slide Time: 05:03)

If a 2 degree of freedom system or a 2 freedom system is integrable, then
note that when the degrees of freedom are 2 the phase space dimension is
4; it is a 4-dimensional phase space. If there is a Hamiltonian and you
have a conserved quantity like the energy one conserved quantity in this 4
dimensions automatically constraints everything to a 3-dimensional energy
shell. And in this phase space we have tori if the system is integrable a good
example is given by 2 by a 2 degree of freedom harmonic oscillator. So, I
write down the Hamiltonian as a

H̃0 =
1

2
(p2x + p2y) +

1

2
(x2 + y2)

=
1

2
(p2x + x2) +

1

2
(p2y + y2)

and rearranging the terms you will note that this is written as a harmonic
oscillator in the x variable and the harmonic oscillator and the y variable,
which are uncoupled from each other and is separable and because it is a
separable system it is also integrable. In action angle variables you can easily
show that in the action variable Ix and Iy, H0 just becomes H0 = Ix + Iy.
(Refer Slide Time: 06:31)
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If to this we were to add a non integrable perturbation on a Poincare section
what we can see is the following. The rational tori will break up to form
chains of fixed points alternating elliptic and namely stable fixed points and
hyperbolic or unstable fixed points you can see that over here where you
have got the elliptic fixed points over here and the hyperbolic ones marked
out by xs different rational tori seem to have broken up over here. So, there
is another rational torus that is broken another one over here and one over
here. For this outermost ring of stable and unstable fixed points, we have
also drawn in the stable and unstable manifolds of the hyperbolic fixed points
over here and as is typical in such systems, it is possible for the stable and
the unstable manifolds of different fixed points to intersect and because they
have intersected once they must intersect infinitely often giving rise to this
tangle over here or over here around every hyperbolic fixed point there is a
hyperbolic tangle. Some of the quasi periodic tori are surviving and these
are the solid curves that you see over here recall that this is the Poincare
section of the flow from the 4 dimensional system to the 3-dimensional energy
shell and this is a slice across the 3 dimensional energy shell. The tori that
survived are often termed as KAM tori. (Refer Slide Time: 08:27)
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Poincare himself in .. 1892 was aware of this image even though he could
not quite draw it he writes in the new methods of celestial mechanics it is a
translation, he says the intersections form a kind of lattice web or network
with infinitely tight loops neither of the 2 curves this unstable manifold of the
hyperbolic point or the stable manifold must ever intersect itself but it must
bend in such a complex fashion, that it intersects all the loops of the network
infinitely many times. One is struck by the complexity of this figure which
I am not even attempting to draw nothing can give us a better idea of the
complexity of the three-body problem and of all the problems in dynamics,
where there is no holomorphic integral and the canonical perturbation series
diverge. The absence of a holomorphic integral over here essentially refers to
the fact that the system is non integrable. (Refer Slide Time: 09:45)
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So, to the system of 2 harmonic oscillators that we have started with. If
we now add this particular perturbation which is εH̃1 = y(x2 − y2/3), one
gets a very famous nonintegrable Hamiltonian system that was first written
down by Mitchell Henon and Carl Heiles in the Astronomical Journal in 1964.
Very shortly after Lorenz study of the Lorenz attractor in 19 in 1963. This
Hamiltonian system has in many ways played the same role as the Lorenz
system in that the Lorenz system plays in the study of dissipative systems
and dissipative chaos the Henon-Heiles Hamiltonian plays a very similar role
in Hamiltonian chaos. For this system there is only one truly conserved
quantity and that is the total energy. Short calculation will show you that
the potential energy which is these terms x square plus y square and this
additional perturbation term all this is purely potential and all this is purely
kinetic. This potential energy has triangular symmetry and all the motion
is bound if the energy is E < 1/6. (Refer Slide Time: 11:17)

6



In 1964 Henon and Heiles Made calculations and they were able to see orbits
in this particular system and they found 2 different kinds of orbits. One
was a set of quasi periodic tori and here are images of this quasi periodic tori
with the potential energy surface drawn over here. So, this is in the xy plane,
here are images of tori and you can see the very smooth a very well behaved
well ordered curves over here, what is distinguishing about the tori are these
caustic curves where the trajectories all focus along certain points and this
is very typical of motion on a torus, note that this is a motion on a torus in
a 3-dimensional space, which is being projected now onto 2. But what you
see these caustic curves are very characteristic and are a way of identifying
toroidal motion. In contrast you have a motion that seems to be near a torus
for a little while and then it just seems to escape and go all over the place
and this is a an orbit, which is termed chaotic because you can compute the
Lyapunov of exponent using the methods that we have discussed earlier and
we find that you have a positive Lyapunov of exponent but again you have
chaotic motion in this Hamiltonian system. (Refer Slide Time: 13:01)
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If you were to compute surfaces of section as a function of energy and these
are images taken from Henon-Heiles original paper. Again recall that we are
doing a surface of section of a 2 freedom system, 4-dimensional phase space,
3-dimensional energy shell and you are taking a surface of section to bring
the whole image of the motion onto 2-dimensions. When you have tori all
over the place, then when you cut through this set of tori you basically find
nested tori one inside the other and at very low energy, E is 1 by 12 you
find that the motion is completely covered by tori everywhere, the image of
the tori on the Poincare section is a closed curve. So, wherever you look you
find closed curves at a higher energy of 1 by 8, you find that now some of
the rational tori have broken up leaving behind the stable and the unstable
points. Surrounding the stable points are also these tori these small islands
that you see over here and the unstable points would have been somewhere
over here, but because of the hetero clinic tangle that we saw in the earlier
picture you do not see those hyperbolic fixed points anymore and what you
have is just the image of chaos all over the place. You have the remnants of
KAM tori you see some of them over here. As you increase the energy even
higher and this is essentially the highest energy for which all the energy all
the motion is bound, you find that the phase space is really largely covered
by chaotic orbits that is points on an orbit that do not follow any curve
although there are some KAM tori you can see them over here and here
and here, but by and large the entire motion is dominated by chaos, chaotic
dynamics and what you see is chaos everywhere, chaos in a limited region over

8



here and mostly tori everywhere over here. Integrating equations of motion
in Hamiltonian systems is not particularly difficult because you know the
Hamiltons equations for the system. (Refer Slide Time: 15:57)

But it is possible to integrate these equations for much longer times, if we
work with mappings rather than differential equations. In discrete dynamical
systems and a lot has been studied in this area, the analog of Hamiltonian
evolution is area preserving transformation. Recall that in 2 dimensions
early in one of the lectures of this course I have shown and discussed that
the change in area in a discrete map is essentially the determinant of the
Jacobean matrix. So, area preserving maps in 2 dimensions resemble the
dynamics on the Poincare sections of this 2 freedom system quite faithfully.
Mitchell Henon again in 1969 and actually also in the Henon-Heiles paper
introduced mappings to mimic Hamiltonian dynamics and here is one such
map which shows some features of the dynamics particularly well, this is a 2
freedom map. So, you have

xi+1 = xicosα− (yi − x2i )sinα

yi+1 = xisinα− (yi − x2i )cosα

iteration through this particular relationship and you can easily verify that
the Jacobean of the transformation has determinant 1. (Refer Slide Time:
17:45)
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This dynamics is very interesting and very similar to the Henon-Heiles surface
of section that we saw for different values of alpha ah. So, here is the case
where cosine of alpha is equal to 0.8 and you find that all the points in
this region are lying on smooth closed curves very much like the tori torus
motion that we had in integrable systems. The mapping is not integrable by
any stretch because there you can see that there are orbits that move away
but certainly you can see the image of toroidal motion over here. As you
change alpha and here the changes to cosine alpha is equal to 0.4, you find
this familiar image of stable and unstable points alternating on a ring. So,
here you have a an elliptic fixed point, a hyperbolic fixed point, an elliptic
hyperbolic elliptic hyperbolic and so, on and so forth. Then there are orbits
that escape to infinity and that is a feature of this map. Very interestingly
you can also see the effect of the homo of the hetero clinic tangle. (Refer
Slide Time: 19:01)
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Here is an image of the mapping for cosine alpha is equal 2.24 and here
you find that the elliptic fixed points and you will see them really at the
center of these islands over here and the hyperbolic fixed points which you
see over here. Now the hyperbolic fixed point you cannot see it itself because
it is an unstable fixed point, but you can see the effect of the heteroclinic
tangle if you zoom and this I think is the zoom of this particular point over
here yeah of this point over here this get zoomed out and what you see is
that, the image of this heteroclinic point is somewhere over there that that
location over there and then every point over here you see is really an image
of this heteroclinic tangle. You can see KAM tori, you can see other chains
of islands and you can see that between these chains of islands also there are
heteroclinic orbits and the tangle over here. So, there is tangles everywhere,
this is very much an image of what has happened to the rational torus that
were surrounding this point, having broken up and then it has resulted in all
this chaotic dynamics. (Refer Slide Time: 20:33)
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One can study these maps many of these maps, but the standard or the
Chirikov-Taylor map has played a very important role in a lot of discussion
on Hamiltonian chaos.

pn+1 = pn +Ksin(Θn)

Θn+1 = Θn + pn+1

This is a another 2-dimensional mapping in loosely speaking action angle
variables except that now we have got you know this is like a momentum
variable and this is an angle. So, this actually can be shown to come from a
Hamiltonian system which is a time dependent Hamiltonian system and here
the ok.

H̃(p.θ, t) =
1

2
p2 + δ(t− n)Kcos(θ)

So, the potential energy which is Kcos(θ) that actually acts only at times
at integer times. So, whenever the time is equal to n; n is 0, 1, 2, 3 etcetera
integers, this potential this potential energy acts up because of the delta
function and between the kicks the motion is purely ballistic it is just a
half p squared, the Hamiltonian is a half p squared. So, you just have got
straight motion. If you were to write down the corresponding Hamiltonian
equations for p dot and for theta dot from this Hamiltonian, you would and
then you proceeded to discretize it the following equations emerge, this is a
mapping now and this mapping is actually a fairly faithful representation of
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this dynamics because the potential energy acts only at integer times. So, the
momentum in a sense can only change at integer times and the angle evolves
smoothly between the kicks. So, there is no so, that is this evolution between
the kicks the evolution is ballistic. Now, this standard map describes typical
behavior of area preserving maps with a divided phase space I am going to
come to that in the next slide, and it is of great relevance to particle dynamics
and accelerators also to microwave ionization of Rydberg atoms numerous
are the very practical realizable experimental systems. The dynamics can be
of course, you know in integrated very simply you start with the whole set
of different initial conditions and you just evolve them under this map and
what you see is as a function of k the dynamics the image of the dynamics
is very different. (Refer Slide Time: 23:31)

This map is defined modulo 2 pi. So, all the variables are just divided by 2
pi in this diagram over here ah. So, everything this is theta going from 0 to
1 right and this the images themselves are taken from Chirikovs paper. For
low k, k is equal to a half you find that the if I start with an initial condition
over here, it will trace out a smooth curve that goes that traverses the square
from one side to the other. Most of the curves are smooth joining one on you
know joining it back onto itself occasionally, you have these islands that you
can see over here these are remnants of rational tori and one must remember
that k not equal 0 is immediately a non integrable system over here, because
if you go back and look at it. If k is equal to 0 this term does not exist and
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p n plus 1 is a conserved quantity because p n plus 1 is just equal to p n.
As you increase k to this special value, you find that this is the point where
orbits are of they have this special feature that an orbit starting over here
and let us say remains within this particular band and orbits that start over
here remain within this particular region even though they are completely
chaotic, they do not traverse this square from top to bottom. So, this is the
divided phase space that we refer to in the case of the standard map. And
the reason is that there is a curve which is traversing the square from left
to right which in a sense prevents traversal of orbits from bottom to top.
At this value of k the last such curve just disappears. Notice that this is
a curve that is traversing from left to right as is this as is this as all these.
So, for small k you have a very large number of curves that traverse from
left to right and prevent top to bottom motion. At k equals 0.97 whatever
you find that the last such curve has just disappeared and for larger k now
orbits can move freely from top to bottom or from left to right, they can just
move everywhere every which way because there are no curves that bound
the motion to remain in any particular region. They still are KAM tori even
at the higher it at higher nonlinearities and this is a feature of many many
chaotic systems ok. The standard map has been very important because it
is possible to calculate this last value of k analytically this is in a sense in a
helping people understand exactly how widespread chaos comes to be what
are the what are the things that go into the breaking of tori and how the
KAM theory works in practice. Another class of systems that has helped in
the understanding of chaotic dynamics in Hamiltonian systems particularly
has been billiards. (Refer Slide Time: 27:33)
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Now, billiards are a generalization of the particle in the box problem, where
basically you have a particle that is moving freely inside an enclosure and
when it comes to the edge of the enclosure, you find that it gets scattered
from the edge of the enclosure with the angle of incidence equal to the angle
of reflection all right. So, the potential energy inside the box is equal to
0 and the potential outside is infinity and some billiards have been studied
in great detail helping us to understand the difference between chaotic and
non-chaotic dynamics. What has shown over here is a circle billiards. So,
you have a particle inside a circular enclosure this is a particle inside a square
except that there is a scattering a scatterer in the middle of this square. So,
the particle not only reflects from the boundaries of the of this enclosure but
also it reflects from the from this scattering element over here right. This is
known as the scene I billiard and this is in the shape of a stadium and so, it
is called the stadium billiard. (Refer Slide Time: 29:01)
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Now, billiards can be regular or irregular in particular some billiards are in-
tegrable and the number of constants of motion are equal to the dimension
of the configuration space. Now in 2 dimensions some familiar billiards are
the rectangle billiard which also is a real physical billiard when you play the
game, a circle billiard and the elliptic billiard these all turn out to be inte-
grable. What I have shown over here are orbits inside a circular billiard and
you can see that the circular billiard now the caustics of the motion that is to
say the shape which is formed by the envelope of the trajectories, the caustic
of the motion is another circle. Likewise, for an ellipse there are some orbits
that form the that have a caustic of an ellipse, but there are also other orbits
many other kinds of orbits in particular there are orbits whose caustics form
a hyperbola and these 2 points over here are the foresight of this particular
ellipse there are orbits in addition that will just bounce back and forth along
that particular point over there. So, there are many different kinds of orbits
that are possible. In contrast to the integrable billiards there are non inte-
grable billiards as well and the stadium is an archetypical example. (Refer
Slide Time: 30:39)
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A typical orbit in the stadium billiard is completely chaotic, it just goes all
over the place. In fact, if you give enough time it is also ergodic it will go
over the entire space available. And this is in sharp contrast to let us say
something like the circular the circular billiard because wait; however, long
you want the central region is never going to be filled in by any orbit. In
addition to a chaotic orbit such as the one that is shown over here, we also
have a host of periodic orbits for example, there is one that bounces back and
forth between the midpoints over here there are an infinite number of orbits
that will bounce back and forth between these walls. In fact, they have a
name they are called the bouncing ball modes. Then you have an orbit that
will just bounce from the midpoint of this side to this side to this side to this
side like a diamond over here and an orbit that looks like a z and a figure of
8 and so, on and so, forth. These are all periodic orbits because they retrace
themselves nevertheless all of them are unstable and this is a characteristic
feature of these kinds of systems all right. (Refer Slide Time: 32:05)
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This brings me to the topic that I want to discuss at the very end of this
introductory set of lectures, because a lot of physics deals with classical dy-
namics of course, but more relevant question to ask is to do with the quantum
mechanics of such systems. Does the nature of the classical dynamics have
any impact on the equivalent or the related quantum phenomena on the
quantization? Now part of the reason for asking a question like this is his-
torical because there is a long tradition of associating classical orbits with
quantum states. In fact, in most early treatments or the earliest kind of
treatment that the typical student is exposed to is Bohr-Sommerfeld quan-
tization where a specific kind of orbit is associated to the quantum state or
further down the line when you see the semi classical WKB-method that is
also a way of associating classical and quantum mechanics. What is done
in those cases is that the classical system is effectively expressed in action
angle variables and correspondence is made between integer values of the ac-
tion or specific half integer values or any other there is some other cases but
correspondence is made between the integer values of the action and specific
quantum states. Now, in order for that to happen you must have action
angle variables and that must mean that you have tori but we know that
most systems are non integrable this is the discussion we have had in the last
2 lectures. And if there are few tori or no tori in the phase space then there
are no action variables that you could construct easily anyhow. However,
you can take a completely different view of quantum mechanics and say that
the quantum mechanics, the quantum Schrodinger equation over here can
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always be solved even if ˆ̃HΨ = EΨ it is a numerical solution you can always
solve the quantum equation over here and get the associated eigenvalues and
eigenfunctions. (Refer Slide Time: 34:47)

Now, this led in the 1970s to the question are there regular and irregular
states? Namely we know that there is regular and irregular motion in Hamil-
tonian systems. The regular motion is associated with tori the irregular
motion the chaotic motion does not have tori is there some connection be-
tween states that are associated with tori and are there other kinds of states
that are associated somehow with chaotic motion? Now this was an early
discussion of the problem, but over the years there is been a lot of work in
this area and these ideas have been greatly refined especially because there
are a whole lot of applications. But one aspect of the difference between
quantum mechanics of regular systems and irregular systems was identified
very early and this has to do with eigenvalues spacings. (Refer Slide Time:
35:57)
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Looking at the spacings of many quantities has been an area which has been
if interest and here is a here is an image from which I picked up from the net
from somewhere which shows a lot of different different levels ok. Over here
is just this bunch of lines that are equally spaced these could be the energy
levels of a harmonic oscillator for example, equally spaced energy levels. If
one just had purely random levels then this is what a typical realization of
random levels looks like. If I take the periodic spacing over here the harmonic
oscillator and then just jiggle it a little add a little noise you get something
that looks like. So, begins to look like a barcode, but right next to it is the
end eigenvalue spectrum the levels of a radioactive nucleus Erbium 166 these
are the nuclear energy levels of Erbium 166. Here are a set of eigenvalues
of a matrix which is got completely random entries it is a symmetric matrix
but it is got completely random entries and though in one half of it and here
are the eigenvalues written down. So, this is the Riemann zeta function and
here are the zeroes of the Riemann zeta function starting from the 10 to the
22th zero upwards. So, you can see how they are spaced and here finally,
are a 100 consecutive prime numbers starting from 103613 and that is what
the spacing looks like. Of course, these are all normalized such that you
have a 100 levels in each of these columns but you can see that the kind of
system and the kind of levels seemed somehow to be related or rather it is
very characteristic. Here is a harmonic oscillator, absolutely equal random
and various levels of correlation between these different kinds of levels within
the same system right. Where do chaotic and non chaotic systems fall in this
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in this classification? And note that chaos or lack of you know regularity
or integrability and chaos terms that come from classical dynamics and we
are asking the question of what happens to the quantum mechanics of such
systems. (Refer Slide Time: 39:03)

Well attention was drawn largely by Michael Berry and E.M Percival to the
spacings distribution in those days and it was proved that for completely
integrable systems, the eigenvalue spacing distribution is Poisson leave out
harmonic oscillator systems because they are exceptional

P (s) = e−s

but if you take a typical integrable system you would find that the eigenvalues
have got a Poisson distribution which is basically just a decaying exponential
and the highest probability is to have spacing of 0 or levels are clustered very
closely together. For nonintegrable systems on the other hand, there is a
belief that they have the same distribution as random matrices in some sense
the complexity of the classical dynamics shows up in than matrix elements
that are completely random and this goes back to an observation a conjecture
by Eugene Wigner on the that the eigenvalues of random matrices should
provide a good model for nuclear energy levels at least as far as the statistics
of the levels were concerned. Wigner surmise that the distribution would
be something like this, this is basically a Gaussian but it is shifted it is
sort of it is multiplied by s. So, this actually is a distribution that looks
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something like so, ok. So, you have a distribution which is Poisson or just a
decaying exponential or a Wigner distribution and the conjecture was that
for integrable systems one would find Poisson for chaotic systems you would
find the you would find the Wigner distribution.

P (s) =
1

2
πse−

πs2

4

(Refer Slide Time: 41:11)

Well if you take a circle billiard it is an integrable billiard, you can write
down the Schrodinger equation and that is it is in 2 dimensions.

−h2

2
52 ψn,m(x, y) = Eψn,m(x, y)

So, you just have the this is the kinetic energy or and this is here is the
this is the eigenvalue equation and the boundary condition of course, is that
the wave functions have got to vanish on the outer circle over there and this
is a well studied problem and it can be solved exactly; the eigenfunctions
and the eigenvalues can be computed exactly and they are related to zeros
of the Bessel function now if you calculate about you know 1000 such levels
in the circle billiard and you form a distribution you here is a histogram of
the distribution it follows the Poisson distribution very well. So, here you
find this is an experimental result if you like, here are a hundred thousand
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levels of the circular billiard and it follows the Poisson distribution rather
well. (Refer Slide Time: 42:23)

If you take the Sinai billiard as Bohigas Giannoni and Schmit did in 1984
then you can again solve the Schrodinger equation in this particular enclosure
here there are 2 boundary conditions to be followed, the wave functions
have to vanish on the square and they have to vanish on the boundary of
the inner deflector this is a completely chaotic system there are no periodic
orbits that are stable and so, there is no question of having some mixtures
of tori and chaos. So, the eigenvalue spacings for this they really conform
to the Wigner surmise which you see over here is this particular curve that
has been drawn. And again you find a histogram that has been drawn the
Poisson distribution is this exponential curve that you see over here and the
actual distribution is nothing like it bohigas and company did not actually
solve it in this enclosure they solved it in a quarter of this enclosure which is
essentially the same features of chaos in all the orbits. So, it seems that the
eigenvalue distributions the spacings distributions follow these 2 extremes of
these 2 extremes. (Refer Slide Time: 43:47)
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In these of the Poisson distribution on the one hand and the Wigner
distribution on the other hand for systems other than billiards like Henon-
Heiles the phase space can have a mixture of tori and chaos and the statistics
tend to be more complex but it is quite understood you know in which way
there are more complex. Now, this is a subject which has really progressed
way beyond where it started out in the 70s and 80s and people have looked
at the eigenfunctions the nature of the eigenfunctions in different kinds of
chaotic billiards here are just some images taken from the web on that there
are many many open issues in Hamiltonian chaos and particularly in the
area of quantum chaos, and the current frontiers are much further along
than looking at eigenvalue statistics although this continues to be like many
other problems something of abiding interest. Thank you.
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