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The Baker and Horseshoe Maps.

(Refer Slide Time: 00:30)

Today we will continue our discussion of flows and chaos in flows and so on
via a discussion of two very paradigmatic examples of The Baker and The
Horseshoe Maps. Recall that in the last lecture, we looked at some examples
of coupled ordinary differential equations which come from a truncation or
a simplification of the Naiver-Stokes equation. The Lorenz system which is
being so important in the development of this subject, the motion in the
Lorenz system as we saw was circulatory, it was a periodic, it was chaotic,
and it was on a fractal attractor. Now, if the attractor is fractal and the
motion is chaotic such an attractor is called a strange attractor. (Refer Slide
Time: 01:17)
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And what we saw is that there are examples of strange attractors not just
in the Lorenz system, but also we saw in the Rossler and the Rossler which
is sort of imaged over here in the upper right hand corner; the way in which
the motion goes on the Rossler attractor is that it goes circulatory for a
little while and then it goes up into the third dimension and then it again
circulates in the x and y plane and so on. Central to the formation of a
strange attractor is the way in which phase space undergo stretching and
folding. We saw simple examples of that in the image of the taffy machine
but the way in which phase space dynamics occurs in a in this in this kind of
a dynamical system is that volumes get bent over and then stretched apart so
that nearby points move can move very far from each other and even though
they may move closer in other directions. There are two or there are a few
important models two of which we will discuss today and these are known
respectively as the baker transformation and the horseshoe map. (Refer Slide
Time: 02:43)
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So, the baker transformation is a; it is a transformation of a square onto
itself and it loosely resembles the action of a baker as he or she would be
kneading dough. So, or to make a more familiar example in our context how
you how one mixes the dough for chapatis or for to make a naan or something
like that ok. So, the action of this baker action is the following; you start
with a unit square, you stretch it out into a rectangle of half the height and
twice the length so that the area is the same, then you cut the rectangle
into two and put the second half of this rectangle onto the first, so, that you
get back a square. Through this transformation you can see that the area
of the square has not changed. After one transformation you can see that
the square is such that those two points let us say, the two eyes of this little
figure over here which were close by in the inertial in as we started out, after
one iteration of this or one transfer one application of this transformation
one eye is on the lower part of the square and the other eye is on the upper
part. If you do it again you can see now that things have got stretched out
in this x direction and the two eyes so to speak are at two different locations
over here. You would apply it once more and now you have got a completely
messed up figure, but the area has remained the same. The actual map itself
written algebraically is the following;

x→ 2xmod1

y → y

2
+

1

2
Θ[x− 1

2
]

that was the first part of this transformation. In the second part of the
transformation we apply the mod one operation so, all these points are not
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no longer bigger than 1 they are taken back to this side and you add one half
depending on where x was. So, if you just sit down with a piece of paper
and work it out, you can see that this particular mapping is exactly what
the baker transformation is all right. So, after a few iterations the square is
completely mixed up and this is a model which we can analyze in some more
detail. (Refer Slide Time: 05:38)

So, here it here is an very nice animation that I found on the net and you
can see what is happening over here. You start with the inertial square and
well let me just come back to it in a moment, you had a square which started
out with one side red and one side green and one side black and then as you
keep applying it, you find that there are successively more strips of green
and black until finally, all the points are completely mixed up and you can
see that the action is exactly as it was on that smiley face that we started
with. At each step now the separation between points on the horizontal lines
this doubles, because we are stretching out by a factor of 2 and points on
a vertical line their distance decreases and in fact, it becomes a half. So,
points in the vertical direction come closer together and in the horizontal
direction they spread far apart. Now you can actually do much more with
this particular map. Any point in [0,1] can be written in binary expansion
as we have done in various examples in the past. So, if I were to write the x
coordinate as

x = .a1a2a3...ak...

all the way the sequence as long as it is required to infinity and if I write the
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y coordinate as
4y = .b1b2b3...bk...

also in binary so, the symbols a and b are either 0 or 1 right. So, all the as
and bs are 0 and 1 and this is a unique index of each point x , y. Now if I
should write both of them together, the x coordinate in the forward direction
and the y coordinate in reverse direction note that advancing in time is the
same as taking this point and shifting it one space to the to the right. So,
if I start with a1, a2, a3 etcetera and b1, b2, b3 this way after one iteration the
x coordinate becomes a2a3 all the way up till ak, whereas the y coordinate
becomes a1b1b2b3 etcetera going down this way. (Refer Slide Time: 08:38)

Now, this is a very nice feature of this particular map and you can see why
this happens, since we are reading the y coordinate in the reverse direction
multiplying x by two shifts the point to the right there is no surprise in that,
because we know how we have done this before in other examples. Now,
what about y? You see if a 1 is 0 then the x coordinate is less than a half.
If a 1 is 1 the x coordinate is bigger than a half. Now we also know that if
the x coordinate was less than a half, then the y coordinate only gets halved
whereas, if the x coordinate was bigger than a half, then the y coordinate
gets a halved and you have to add 1 halve to that. That is the point of
this algebraic representation over here, y goes to y by 2 plus 1 half and that
depends on whether x was bigger or less than half all right. So, again a piece
of paper and just working it out and you can convince yourself that this is
exactly equivalent to the action of the baker transformation. You just move
your binary point one step to the right to go forward in time. Now this means
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that we can use symbolic dynamics very effectively in this system, just as we
have in earlier cases and all the points on the square can be written down in
this binary representation and as since the dynamics forward in time just go
you know is moving the point to the right, going backwards in time is moving
the point to the left and you can immediately infer that there are two fixed
points that is the sequence 0 0 0 and 1 1 1 1 1 etcetera because and they are
the end points of the square. If you take this periodic sequence over here,
you get a period 2 point as you would expect because this periodic sequence
is a periodic is a symbol sequence of length 2.There are you know all the
things that we have discussed in the case of the Bernoulli map are going to
be true over here; there are dense a periodic orbits, there are many different
kinds of periodic orbits, there is a there are through all the interesting kind
of symbolic dynamics can be done in this system. (Refer Slide Time: 11:33)

If you were to add dissipation and the way in which we would do that is to
multiply let us say the you still go you increase the x coordinate by a factor
of 2 but instead of instead of halving the original square, you multiply it
by a factor which is bigger than sorry which is less than a half. So, in this
particular example over here, this square is stretched out by a factor of 2
but the height is reduced to 0.3 of the original height so, the area now is
0.6 rather than 1. And when you cut the second half of it and put it back
on top you take care to put it in the upper half. So, now, you have the
square with 2 gaps in it essentially. So, at each stage the volume is reduced
by a factor of 0.4 and if you keep doing this successively, you will get an
attractor essentially of 0 volume. At each stage therefore, I mean this is the
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algebraic version of the mapping and you just start getting two rectangles at
stage 1, 4 at stage 2, double that at stage three, double that at stage four
and so on and so forth. And each of these are going to be getting thinner
and thinner because they are now getting multiplied by this factor a to the
power k. In the limit the attractor of this dissipative baker map is actually
a set of lines if I may just draw it over here finally, you will find a whole
set of lines that are there which are just covering this square completely. If
you examine it carefully it is a cantor set in one direction and of course, the
line and the other direction and in the next homework you will see you will
have to calculate the box counting dimension of this and show that it is this
particular quantity. So, the point of looking at the baker map is that if you
have got a conservative baker map, we know that the dynamics is as this can
be very very complicated, it can be just like the Bernoulli system or the tent
map or any of those chaotic examples that we have looked at. It is however,
area preserving. So, there are no attractors. If you add some dissipation you
get an attractor and the price that one pays for it is that the volume of this
attractive is of course, 0 and we are not able to do the symbolic dynamics
in quite the same way. Nevertheless, is this is an important example. (Refer
Slide Time: 14:40)

Proceeding some of these ideas was a very important notion that was intro-
duced by the mathematician Stephen Smale and it goes under the name of
Smales horseshoe. This is a good example of how stretching and folding can
be can be looked at mathematically and this stretching and folding as we
have been emphasizing is essential to the formation of chaotic attractors. So,
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this is a model in two dimensions and again one starts with a square. Now,
this square is stretched out into a rectangle that is longer than the original
square was I mean it is more than twice the length of the original square and
it is shrunk down by a factor. Some of these details are not that important,
but the basic the basic idea is the following; that you start with a square,
stretch it out, fold it into a u shape as I have shown over here this is the
horseshoe shape and then place it back onto the square right. And we ask
for the overlap between the original square and the horseshoe and then one
keeps on doing that over and over again as one can see over here. Since you
have taken the original square elongated it, shrunk it in one other dimension
and turned it around and put it back it is interesting to ask whether there
are any fixed points or any points that remain inside the square after this
operation has been done and clearly, because this is a map which is on to
itself there must be a fixed point somewhere. (Refer Slide Time: 16:41)

So, here is a slightly better image of the Smales horseshoe. So, here is the
original square all coloured green, it is pulled out stretched into a u turn
folded into a u and put back onto the original square and here is the act
action of f again. So, this is pulled out twice and again turned around and
now you can see how this at the action of this of the mapping is when applied
twice. Note that this map also has an inverse because the way in which it was
stretched out now you can imagine going backwards in time or one step back
and there must have been 2 vertical strip strips that when you stretch them
out and folded them again would give you exactly this image over here and
here is the map backwards in time two steps it will now consist of vertical
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strips over here. So, let us just take a step back and note that after I have
done the action of the map once I get 2 horizontal rectangles over here; when
I apply the map again, I get 4 horizontal rectangles over here. The pre-image
of these 2 horizontal rectangles if you like are these 2 vertical rectangles over
here in yellow and then 2 steps back from here will give me 4 vertical steps
and so on. Now if the area of the square that remains inside the square after
application of f is lowercase f and the is this quantity f over here you can see
that actually f has to be less than 1, because there is a smaller area that is
remaining in the inside the square. So, after n iterations the fraction that
would be left is f to the n and as n goes to infinity all the points essentially
leave the square. So, we can ask the question is the are there points that
never least leave the square and we call that set lambda. (Refer Slide Time:
19:16)

Now, if you should ask the detailed question by giving notation over here so,
this is the horizontal strip it is 0, this is the horizontal strip H 1. After two
steps this is H 0 0 this is 0 1 1 1 and 1 0 and the reason for these subscripts
you can easily figure out that when I stretch out this original square and
fold it around and put it back, the origin of so, this lower part which is H
0 this part comes from H 0 and therefore, H 0 0 this part will come from
H 1 and hence H 0 1 and in the same way back you can figure out since it
has been folded over, this is H 1 0 and this is H 1 1. The same logic a little
more pencil and paper work at home and you can convince yourself that I
can give this the notation V 0 and V 1 for the vertical strips 0 and 1 and
their histories will go back in time like so, so, that this plus this essentially
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come from here and this and this come up from the other one over there all
right. Now where do the points that make up the horizontal strip H 0 come
from? You can look at the inverse of the map and you can see that this must
essentially come from V 0 because when I stretch out this to a longest into a
longer rectangle and then flip it over all the points from here essentially goes
straight into H 0. Likewise, all the points from V 1 will go into H 1. As a
matter of fact, I can write introduce some notation and say that v sub i is
just f inverse of H sub i and going back another step you see that vij is the
map twice backwards on H i j. (Refer Slide Time: 21:49)

So, the set of points that will stay in the square forever can now be deduced
by construction. Now, at stage 1 itself, the points that will stay in the future
must either be an H0 or H1 they must have come from either V0 or V1 and
therefore, they must lie in this intersection (H0 ∪H1) ∩ (V0 ∪ V1). One step
further back, they must lie in the intersection of this union and this union
namely two steps back on both sides. Now, I can go back three steps or four
steps or n steps and therefore, I will find some long union of strips over here,
horizontal strips and long union of a vertical strips and their intersection tell
me that this set lambda must stay inside this particular intersection. So,
here is the intersection for the 3 for 3 iterations. So, you find that there are
64 such squares that lie at the intersection of the green and the yellow. So,
all these light coloured squares that we see over here that is where the set
lambda must lie. (Refer Slide Time: 23:04)
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(Refer Slide Time: 23:28)

And the set itself as you can deduce now is the intersection of a cantor set
of vertical lines and a cantor set of horizontal lines and this is just a set of
points which is a cantor dust. Itself it has measure 0, but it is an attractor
and any point in this sequence can clearly be specified by a by infinite symbol
sequence a0a1a2 etcetera a−1a−2a−3 etcetera with the aks are either 0 or 1
depending on whether fk(x) is in H0 or in H1. So, depending on whether
it comes into the horizontal H0 or H1 that is the number of you know so,
that tells you whether these as are either 0 or 1. The same kind of symbolic
dynamics can be done and we have discussed this in the baker map just now.
So, we keep shifting the point to the right for the future or the left for the
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past and one can see that the dynamics is going to be really complicated,
but we can describe it. (Refer Slide Time: 24:56)

There are fixed points (0,0,0) and (1,1,1). There are an infinite number of
periodic orbits which correspond to periodic sequences of 0 and 1. As a mat-
ter of fact periodic orbits are dense in lambda. The number of periodic orbits
will grow exponentially with the period, it is just the number of sequences
of two symbols that you can write of length n. Ah this is an invariant set
so, once you are in this set you just you know under the dynamics you just
keep circulating inside this set and there are an uncountable number of non-
periodic orbits and furthermore there are a periodic orbits that are dense in
lambda. So, this dynamics is extremely complicated, but there you have a
very simple model the horseshoe which gives you this dynamics. (Refer Slide
Time: 25:58)
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(Refer Slide Time: 26:13)

So, why are horseshoes important in the dynamics? The simple answer is
that horseshoes are important because they occur all over the place and to
see that lets consider a simple linear system, well let us introduce the context
via the simple linear system

ẋ = y

ẏ = x

. Now clearly (0,0) is a fixed point the Jacobian is 0 1 1 0 and the eigenvalues
of this characteristic equation lambda squared minus 1 is equal to 0. They
are plus 1 and minus 1 signifying that this fixed point the origin is a saddle.
So, this saddle this is the inward or this inward direction or the stable part of
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the saddle. This is the unstable direction so, the unstable the unstable direct
unstable manifold the unstable direction and trajectories are clearly moving
away like so; except of course, on these directions on the eigenvectors. (Refer
Slide Time: 27:23)

So, the eigenvectors which are associated with the eigenvalues plus 1 and
minus 1, they will lie along the diagonal lines y = x and y = −x. Now,
these we term the stable and the unstable manifolds respectively and give
them the subscripts u and s. Now in this linear system points that are on
Wu or Ws will always remain on these manifolds. Points which are not there
like I already indicated if a point started from here then it will flow in this
direction but then it will eventually move out whereas, a point which is on
this manifold has to stay on this manifold and eventually reach the fixed
point at any you know it infinitely further in the future. (Refer Slide Time:
28:27)
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This allows us to define the stable manifold of a fixed point or in fact, for
a periodic orbit, is the set of points x such that orbits which start from x
approach the fixed point or this periodic orbit as T goes to infinity conversely.
The unstable manifold is the set of points x such that under time reversal
orbits starting from x will approach the fixed point or the closed curve traced
out by the periodic orbit. Or to put it in other words points on the unstable
manifold in the infinite past were at the fixed point, points on the stable
manifold in the infinite future go to the fixed point. Now, for non-linear
systems these stable and unstable manifolds are not the straight lines that
we see over here, because they are only straight very close to the fixed point
away from the fixed point in a non-linear system the manifolds can actually be
curved and when they are curved one can ask other questions of them because
they are no longer constrained to be always orthogonal to one another. So,
the question one would ask is for non-linear systems the stable and unstable
manifolds are tangential to the linearized dynamics near the fixed point. But
away from this linear domain, they these stable and unstable manifolds are
curved or can be curved and if they are curved the question that arises is
can they intersect. (Refer Slide Time: 30:29)
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Now it can be shown, and you should see the textbook for a discussion for
a very nice discussion of this that stable manifolds cannot intersect stable
manifolds either themselves or others and unstable manifolds cannot intersect
unstable manifolds either themselves or others and the basic reason is that
the dynamics is unique in the phase space and a point at the intersection will
have two different futures if it is on two and two stable manifolds, then it has
to go to two different fixed points or conversely come from two different fixed
points or two different parts. And since you cannot have two different futures
or two different parts this is not possible, because the deterministic dynamics
is unique on in the phase space. They can; however, be smooth connections
between the stable and the unstable manifolds of a single stationary point
and this is called a homoclinic connection or between the stable and unstable
manifolds of different stationary points which are known as hetero clinic
connections and we will see what they look like. (Refer Slide Time: 31:51)
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So, here is a point o with which is in a non-linear system, this is the stable
direction so, here is your stable manifold and here is the unstable manifold
and you can see that the unstable manifold turns around, bends around and
then smoothly joins the stable manifold. So, a point which in the infinite
past was at the fixed point we will also come back to the fixed point in the
infinite future. So, this is your homo clinic connection and in the heteroclinic
case, here is your point x0. The unstable manifold of x0 smoothly joins the
stable manifold of x1 and the stable unstable manifold ofx1 smoothly joins
the stable manifold of x0 and there is no contradiction over here because
a point over here in the infinite past was at as the infinite future is at x1

and this is actually a very common kind of an example these are separate
traces which separate different kinds of motion. So, hetero clinic connections
and homo clinic connections are actually quite common. (Refer Slide Time:
33:17)

17



However, stable manifolds can intersect unstable manifolds right correspond-
ing to the same or different fixed points, but it comes with a caveat. If they
intersect once they must intersect infinitely often. Here is an example of a
homoclinic intersection. So, here is the point gamma and the stable mani-
fold of gamma is this direction, well here you can see the stable manifold of
gamma and the unstable manifold of gamma. So, the unstable direction is
moving on this side and the stable direction is moving this side. Now, o is a
point of intersection of the stable and the unstable manifolds, but now you
see that o lies both at the fixed point in the infinite past as well as in the
infinite future. Imagine that it gets translated in time by one step, if it now
reaches this point over here after one step it is again at the intersection of the
stable manifold and the unstable manifold. If it is now at the intersection
of the stable and the unstable manifold again then its image must also lie
on the stable manifold and its image and its image and so on and the same
argument goes true for the past. So, now we are stuck with the fact that
every point of intersection its image must also lie on the stable manifold and
must have line on the unstable manifold and this since this will only reach
the fixed point in infinite time, every intersection has got to be repeated
infinitely often. The same argument goes for the case of the hetero clinic in-
tersection. Again, if they intersect once they must intersect infinitely often.
These figures are taken from horse book and there you can see the discussion
based on that. (Refer Slide Time: 35:38)
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Now, the importance of the homo clinic or the hetero clinic intersection is in
this observation of Smale that a homo clinic intersection or a hetero clinic
intersection implies a horseshoe-type dynamics. So, to see this let us look at
the fixed point p and the homo clinic intersection p prime over here. So, if
I have got p and this is my unstable manifold W u marked over here, this
is the stable direction W s right and I have just moved it out to make the
horseshoe more evident. Now, as one maps this, take a square z that is that
is marked out also over here as time progresses, z will get stretched out along
the unstable direction. It will get pulled out into a longer shape along the
unstable direction and let us say that after some amount of iteration q plus
it becomes this particular rectangle that you see over here like so. The, in
reverse time this rectangle z is going to get stretched out along the stable
manifold because the stable manifold is defined as all those points that were
that in the infinite future are going to be in the at the fixed point. So, in
the infinite past they were really stretched out along the along the stable
direction. So, in after q minus steps in the past, the image of z is this long
rectangle over here which I have written down as A. Now, if you look at A
you can see clearly that there is a horseshoe map which is sort of you know
leaping out over out of the screen at you, because if I take a and map it
q minus plus q plus times that is if I map it so many times then this long
rectangle goes into this horseshoe shaped rectangle and I have got these two
points of intersection that have come back to the original rectangle. So,
yeah so that is that is the basic argument of Smale that any homoclinic
intersection implies that there is a horseshoe type dynamics and once I have
got this horseshoe dynamics for A after so, many steps then I know that in
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these two regions I must have points which are periodic with any arbitrary
period there must be dense a periodic orbits and so on and so forth. (Refer
Slide Time: 38:59)

Because once there is a horseshoe in the dynamics one has all the ingredients
for chaotic motion, there must be invariant sets contained in z that then
these are equivalent to the Bernoulli shift, there must be unstable periodic
orbits and so on. Similarly one can come up with the same argument for
the hetero clinic intersection and as a matter of fact given the kind of image
that these have because the motion is so complicated, these are often called
homo clinic or heteroclinic tangles. Now, methods to show that a system can
have chaotic motion in the first place are typically based on finding saddles
in the phase space, identifying their stable and unstable manifolds and then
showing that these stable and unstable manifolds instead of joining smoothly,
they intersect transversely and therefore, there must be a horseshoe in the
dynamics and because there is a horseshoe there must be chaos and so on
and so forth. (Refer Slide Time: 40:10)
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For those of you who may be interested in following some of these arguments
with a little more detail, there is a very nice exposition of the Smale Horseshoe
in this in an article in and now sadly defunct magazine called Kvant it usually
published in the Soviet in then Soviet union Russia by it is by Y. Ilyashenko
and A. Kotova this was translated into English and in again is sadly short
lived magazine called Quantum. If you search for it on the net you will find
it in 1995 the May issue ok. These are separated by this illustration is from
the quantum magazine; that is it.
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