
Introductory Nonlinear Dynamics
Prof. Ramakrishna Ramaswamy

Department of Chemistry
Indian Institute of Technology, Delhi

Lecture 11
Fractals

Hello. This week we are going to be looking at characterizing chaos and
as a first step it like to discuss Fractals today. Recall that in the last lecture,
we were looking at the bifurcation diagram for the logistic map and towards
the end I pointed out one curious feature of this bifurcation diagram. (Refer
Slide Time: 00:48)

Namely that when you consider the whole bifurcation diagram which is shown
here in the extreme left of your screen, then a small part of the bifurcation
diagram when expanded looked pretty much like the original diagram itself.
And when you took a small part of that and expanded it, it looked pretty
much like the old bifurcation diagram itself and you could then take a small
part of that and expand it and so on and so on ad infinitum This kind of
geometry is described these days by what is termed fractals and the fact
that a certain structure in the object occurs on smaller and smaller scales is
characteristic of fractal geometry. (Refer Slide Time: 01:53)
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Many natural objects also share this feature; spectacular example is that of
the head of Chinese broccoli, when you look at the broccoli head you can
notice that it is consisting of many little nodules over here. And when you
expand it you can see that, the structure of each of these nodules is extremely
intricate, but if you focus on one of them you can see that each of these looks
pretty much like the whole nodule itself; and the whole structure is repeated
endlessly in this broccoli. (Refer Slide Time: 02:48)

Many natural objects have this feature, if not precisely statistically they have
this kind of feature. And the first person to draw our attention collectively
to, this is mathematician Benoit Mandelbrot who from the fifties onwards
was pointing out that, standard geometry is not enough to describe a whole
variety of natural objects. In a very influential book, the fractal geometry
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of nature in 1983 he says clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth, nor does lightning travel
in a straight line. He was drawing attention to the fact that, when modeling
something like a cloud to a first approximation a cloud is like a sphere; but
as you can see this cloud is far from spherical and even the sphere has little
features on it on smaller and smaller scales. A first approximation to a
mountain might be a cone, but this mountain as you can see has structure,
there are other mountain, the other little cones, on top of cones and so on
and so forth. So, if you really wanted to describe what a mountain look like
it would not be by a simple cone. The coastline of a country or the border of
any particular country is not always very smooth and in particular a coastline
cannot be approximated by a circle. The bark of a tree is not smooth, it is
not some smooth surface; but it has a lot of structure on it as you can see
in this image that I have over here. Mandelbrot pointed out, that in order
to describe these objects we need to turn to fractal geometry. (Refer Slide
Time: 04:50)

And he posed this in a paper in 1967 asking, how long is the Coast of Britain?
He was drawing attention to the fact that, if you take any complicated curve
such as a coastline, the length of that curve depends on the scale at which
you measure. As shown over here, there is a map of Britain with successively
smaller measuring units being applied, at the extreme right corner over here
in the bottom right corner; if I use a scale of 250 kilometers, then in 10
with 10 measurements or 10 steps of length 250 each, I would have you know
completely covered the coastline at that scale. If I went to a smaller scale
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200 kilometers, I need 13 such measurements to do that. If I have a 150
kilometers I need 18; If I need as finer grid a 100 kilometers I will need 29;
with 50 kilometers I am at 72 and at 25 kilometers I met a 169 and it is
of course is possible to do it at finer scales, is just not easy to show it over
here. Notice one thing, that if I use a measuring rod of length 250 kilometers,
my estimate of the coastline is as you can see visually very crude and the
total length is 2500 kilometers. If I use 200 I will get a length estimate of
2600 kilometers, by the time I go to 50 kilometers my length is up to 3600;
but my measurement of the coastline is actually getting better and better;
at 25 kilometers the total length is 4225 kilometers, quite different from the
initial estimate almost a factor of 2, is the same coastline it is just that
my measurement apparatus has gotten finer and finer. So, the smaller the
measurement apparatus are the smaller the increment of measurement, the
longer is the measured length; but more importantly this kind of property,
that the length or some measurement depends on these on the unit on which
you are measuring it is not shared by other geometric objects. (Refer Slide
Time: 07:42)

For instance the length of a line whether I measure it with 1 foot or with 6
inches or with 4 inches, the length is always 1 foot. It is 1 unit, 1 measurement
unit here, 2 over here and 3 over here, but the answer is the same. Likewise,
were I to calculate the area this is 1 square unit; but if I used a quarter of
the length or you know a half the length, so it becomes a quarter of the area
sorry. So, if I use a quarter of the area I find 4 units over there; but 4 times
1 by 4 is also equal to 1. And likewise if I use a 3rd over here, then my unit
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square is 1 by 9; but I have got 9 of them, so again the area is 1. The same
argument holds to show that, if I measure a cube with length 1 with a box of
length 1 or one half or one third my answer for the finer volume is the same,
which is that the volume is 1. This is actually at the heart of what we think
of as dimension in the following way. If I ask how many boxes of size 1 by
r are needed to cover the object, and how many and how does this number
increase with r? Because as r increases the size of the boxes gets smaller,
namely the scale gets finer, how does this change? So, if I see this line over
here I need 1 box of length 1, I need 2 boxes of length one half, I need 3
boxes of length one third, for the square over here for the plane I need 1 box
of which has side length 1, I need 4 boxes of length half; and 9 of a length
one third and for the cube the answers are 1, 8 and 27. (Refer Slide Time:
10:14)

So, now, if I note that N(r) = rD . It is easy to see that for the line I will
find that D is equal to 1 for the square over here, the plane I will find that D
is equal to 2 and finally, for the cube D is equal to 3 as you can verify easily
just looking at this little example over here. So, this is the familiar definition
that we have of dimension, and it gives these numbers 1, 2 and 3 for familiar
everyday objects in 1, 2 or 3 dimensions. Also as it happens, if you take a
point which has dimension equal to 0, the number of boxes that is required
to cover a point, a single point is always one regardless of how big the box
is. So, it will go as r to the power 0 which is 1 and that tells you that the
dimension of a point is, in fact, 0. For long time mathematicians have been
wondering about object, so which you give get slightly non trivial answers
using the same procedure. (Refer Slide Time: 11:29)
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Here is a curve that was described by the mathematician Von Koch curve
and when you apply the same procedure that we have outlined to such an
object, we find that the answers are more interesting. So, the way in which
this curve is constructed is as follows; you start with the line known as the
initiator over here. So, you remove the middle one third, the one middle
one third is removed and you put in a little hat on that middle one third,
where the lengths of the sides of the hat are the same as one third. So, at
stage 1; this generator figure over here says that you take a line segment and
replace it with this hat function. At the next step what you do is you take
this line function replace it with this hat function, this line function replace
it with the hat function; this one with the same hat function, and this one
also with the same hat function. And now you can see how this procedure
works. At the next stage you take every line segment and replace it with
this hat function and so on and so forth. So, the curve gets more and more
complicated and in the limit this curve that you get is the Koch curve or the
Koch curve depending on how you like to pronounce it. The scales get finer
and finer of course, but note that this curve has this property that a part of
this curve when you expand it, if you blew this up it looks pretty much like
the curve at one previous version. And if you blow this up it looks exactly
like the curve at the previous direct in a previous stage and as a matter of
fact, if you blew up the Koch curve you just took a third effect and you blew
it up it would be the same curve itself. What is the box counting dimension
of this object? At the initiator stage, if I take a box of length 1, I need 1
box to cover this entire object. At the next stage, what I need is a box of a
length 1 by 3 one third; and if I take a box of length one third, I am going
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to need 4 boxes to cover that as you can see 1, 2, 3 and 4. At the next stage
I am going to be down by a factor of 3. So, I am going to need a box of
size 1 over 9; and now I am going to need 16 boxes. It is not difficult to do
the math, at the next stage you are down by another factor of 3 and you are
going to require 4 times more boxes. And it is easy to convince yourself, that
no matter how small it is the boxes are of going to be of size 1 over 3 to the
n and you are going to need 4 to the n such boxes. (Refer Slide Time: 14:57)

Now, given this data over here that when r changes as 1, 3, 9, 27 etcetera
all the way down to 3 to the n, the number of boxes goes as 1, 4, 16, 64 all
the way up till 4 to the n. Putting all this data in this expression over here,
you get that 4 to the n is 3 to the nD from which you can deduce that the
dimension, this box counting dimension of the Koch curve is log 4 by log 3.
(Refer Slide Time: 15:36)
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Now, log 4 by log 3 is not an integer, it is a fraction of some kind; and hence
the name fractal was given to it to such objects by Mandelbrot. In this
particular case by evaluating log 4 by log 3, you can deduce that the value
is something like 1.261. So, the curve is not as thin as the line, which would
have dimension 1 and yet it is not space filling was not filling the plane in
which case it would have had dimension 2, but it is somewhere between 1
and 2. So, this curve has got features on all scales and this is very typical
and characteristic of a fractal object. (Refer Slide Time: 16:24)

This kind of construction can be applied to other objects can take a triangle,
remove the middle third of it, and keep on doing this recursively over and
over again; and a little calculation will show you that the fractal dimension,
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following exactly the same procedures that we have done over here is some-
thing like 1.58 You can do this in more than 2 dimensions, you can do it in
3 dimensions, you can do it in 1 dimension, we can do it in any number of
dimensions; you can have this recursive manner of construction. And here
as the Sierpinski gaskets in 3 dimensions and this object will have dimension
2. So, fractal need not necessarily have a fractional dimension, it is just that
it should obey this kind of scaling in a non-trivial manner ok. So, many in-
teresting objects can be constructed and they will have their own particular
value of the fractal dimension. (Refer Slide Time: 17:42)

But you can go beyond this, you do not have to look at constructed objects,
many natural objects also seem to have the same feature. Of course, these are
not exactly replicas of themselves at every stage; but statistically speaking
they are very similar to the construction at another stage. So, here are two
examples that I have taken from the internet, various different sources, here
is the rivers of Germany for example; and what has been done over here is
to plot the river basins showing the main rivers and their various tributaries
and you can see that visually at least. The moment you see a particular river
basin, if you just isolate a small part of it that looks pretty much like a scaled
down version of the entire thing. And you can scale this one down and this
one down and so on, so this has structure on all scales. Another common
example is that of diffusion limited aggregation, it is a model out of statistical
physics and this is a model which this is an example of a growth process.
And this object grows in this following way, it starts out as a small little
nucleus and then it accumulates particles on the edges and keeps growing
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and you can see pretty much that one part of it looks very much like itself.
(Refer Slide Time: 19:21)

So, to for the coastline of Britain, it is not a smooth self-similar curve; but
it is only statistically self similar. So, there is a procedure for calculating
this dimension by the process of box counting. And how this is adapted to
objects that are not exact copies of themselves is as follows: You cover the
object with a box of size L let us say over here. Once you have done that,
you figure out how many boxes you need, reduce the size of the box say by a
factor of 2. And you ask how many boxes I am going to need now and reduce
it again and ask how many boxes we need now and so on and so on and so
forth. And if you keep scaling the box by size L at each iterate, the number
of boxes that you require goes as N(L) ∼ (1/L)dimension. (Refer Slide Time:
20:31)
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So, on a log log plot, so on this side you plot the log of the number of boxes
which have been touched by the object let us say. And on this side the scale
factor which is 1 over L; so the dimension D is just the slope of this line.
And this is a way in which the fractal dimension is operationally calculated
for a number of different objects; when you apply this to DLA for example,
you get a number like 1.76. Again pointing to the fact that, this object is
not quite aligned; but it is also not quite filling the plane and somewhere
between 1 and 2. (Refer Slide Time: 21:26)

It turns out that fractal geometry is very useful in the analysis of non-linear
dynamical systems. Strange attractors tend to be on fractals; what I have at
the background over there is the Mandelbrot set which you would have seen
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in countless places or screensavers and so on. The boundary of this object is
a fractal and it is well characterized, there are lots of fractals everywhere in
the Mandelbrot set. When you have an attractor, the basin of an attractor is
frequently a fractal, a lot of natural objects are fractals, a lot of constructed
objects are fractals and so, fractal geometry is a very useful way of describing
things. (Refer Slide Time: 22:07)

A famous fractal was described by the Mathematician Georg Cantor over
a century ago. And this is the famous cantor middle third set, which is
constructed in the following way; one starts with a line of length 1 as is
marked over here and from that you remove the middle third portion. So,
the portion from one thirds to two thirds is removed at the first stage; at
the second stage you remove a third of each of the remaining intervals. So,
now, we have 4 intervals of length 1 by 9 each, at the next stage you remove
one third of that; and then you remove third of the next one and so on and
so on and so forth. Now, in the limit one gets the so, called Cantor set
and this Cantor set is a fractal, because as one can see there is a element of
self-similarity in it. (Refer Slide Time: 23:22)
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As you can see this portion of the set, if expanded by a factor of 3 would look
like the entire picture itself. So, this construction displays the self similarity
of this set, the fractal dimension of this set is log 2 by log 3 and this is a
number which is less than 1; and one can see why this you know why the
fractal dimension is log 2 by log 3 by doing the usual box counting. At the
initial stage I need 1 box of length 1 to cover the entire set. If I reduce the
length of the box to one third, I will now need 2 such boxes. If I reduce it to
1 by 9 that is at this level, I will need 4 boxes. And you can easily see that
if I reduce the length to 1 by 3 to the power n, I am going to require 2 to
the power n boxes. In the limit as n goes to infinity, you will find that the
fractal dimension computed in exactly the same way as we have done in the
earlier examples is log 2 by log 3 ok; and this is a number which is bigger
than 0, but less than 1. (Refer Slide Time: 25:00)
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There are several interesting properties of this Cantor set; the first of course,
is that it is self similar and as we have just computed the fractal dimension is
ln(2)/ln(3). But more than that, there are no intervals because as you have
noticed over here; I have removed the middle thirds and then the middle
thirds and the middle thirds and so on and so on recursively. So, there are
absolutely no intervals in this set and the Cantor set just consists of a set of
points. In higher dimensions this construction is termed a Cantor dust and it
is a collection of uncountably many points. Now, how do we see that, there
are uncountably many points in this set, this is done by looking at the ternary
representation of any number in the interval [0,1]. Ternary representation or
base 3, any point between 0 and 1 can be written as 0.a1a2a3... all the way
you know up like ansoontendingtoinfinity; butbecausethisisinbase3theai’s
of is are either 0, 1 or 2. Removing the middle third at step 1 means that all
points with a1 = 1 are excluded. Because points on the left hand side, points
on this side have got a 1 equals 0, points on this side I have got a 1 equals 2;
and what has been removed are all the points with a 1 equals 1. So, at the
first step at the first stage removing points in the middle one third removes
means; that you remove all those points which have got a1 equals 1. (Refer
Slide Time: 27:17)
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At the next stage you want to remove all the points in the sub intervals 1
by 9 to 2 by 9, 7 by 9 to 8 by 9 the middle thirds of these are the 2 sets
and; that means, that all the points with a 2 equals 1 need to be excluded.
At the next stage we will remove all the points with a 3 equals 1; the next
stage is all the points with a 4 equals 1. And in the limit all the points that
remain are points 0, a 1, a 2, a 3 all the way you know going up to infinity;
where the a is are either 0 or 2, 1 cannot appear anywhere. And it is also
easy to see, that any sequence of zeros and twos can be mapped identically
to a sequence of zeros and ones because treating 0 and 2 as just symbols, 0
and 1 would be equivalent symbols. So, in binary notation this is entirely
all the points in the interval; and therefore, the remaining points that we
have in this construction is an uncountable set, but because there are no
intervals at all this is a set of measure 0. This set applies very interestingly
to a dynamical system to which we will now turn. (Refer Slide Time: 29:00)
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But it also seems to arise naturally in many dynamical systems. As for
example, the tent map; recall the tent map that we introduced several lectures
ago x→ T (x), where

T (x) = 3(x), 0 ≤< 1/2

or
T (x) = 3(1− x), 1/2 ≤< 1

, but now I want to make this tent map with the slope 3. So, the tent map
is 3x on the interval 0 to half and is 3 into 1 minus x into from the interval
half to 1. Since this map goes outside the interval, you see this is outside the
interval, points that map here will eventually go to minus infinity; namely
all these points will escape. Everything that maps above the line over here,
once you increase the value it will just keep escape. Now, by construction
you can see that this is precisely the interval one third to two thirds and
all these points have escaped. What about the points that will come to the
interval on the first iteration? This is the pre-image of this interval and as
we know the pre-image of this interval can be easily constructed by looking
at that or going out here and finding those points ok. So, these two intervals
will be exactly one ninth to two ninths and seven ninths to eight ninths over
here. So, these points will escape after two iterations; namely they will come
to one third in the first iteration and then the next iteration they will go out.
Pre-images of these two subintervals there will be 4 of them and they will
escape in 3 steps and so on and so on. So, that the points that will never
escape on iterating in the system, they actually are the middle one third
Cantor set. As you can see, we started with this line 0 to 1; all these points
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left in one iterate, these points are leaving in 2 iterations, these points will
leave in 3 iterations, these will leave in 4 and so on and so on and so forth.
So, that the only points that will always remain in the interval are going to
be the middle thirds Cantor set. (Refer Slide Time: 31:40)

The points that never escaped from this interval upon iteration will form
a fractal and the dynamics will be on this particular fractal, but this will
be contained inside the interval 0 to 1. This is a theme that recurs often
in non-linear dynamical systems; namely that you have chaotic motions on
attractors and these attractors happen to have fractal geometries. Attrac-
tors that are fractal, and on which the motion is chaotic are usually termed
strange attractors, the terminology that goes back to the seventies and is
both standard and it has a mathematical definition. And it is important
therefore, to look at dynamics not just in terms of instabilities and the ge-
ometry of the dynamics. But also look at the structure of the object on
which the dynamics takes place, and these are best described by the fractal
geometry. In the next lecture or maybe more, we will explore such matters.
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