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During last  2 lecture,  we have discussed about Rotational  Spectroscopy. Now, we will  go to

Vibrational Spectroscopy, where we will look at how to calculate energy of different vibrational

level and what is different characteristics of Vibrational Spectroscopy and finally, we will look at

its  application.  Apart  from that we will  also discuss Rotational  Vibrational  Spectroscopy and

Raman Spectroscopy. 
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So,  Vibrational  Spectroscopy  as  the  name  suggests,  it  is  based  on  the  transition  between

quantized vibrational level. Generally, the gap between two vibrational levels is of the order of

1000 to 100000 Joule per mole and if molecule or species absorbs energy of radiation of this

order a molecule start vibrating. So, basically your molecule vibrates on the absorption of IR

radiation. 

(Refer Slide Time: 01:22)

So, this is your electromagnetic spectrum and you can see that highest energy is of gamma rays

and then your X ray. IR comes between wavelength of 0.75 micro meter to 1000 micrometer.



Infrared is divided into 3 different regions 1 is near infrared, which goes from 0.75 micro meter

to 4 micro-meter and your thermal infrared which is around 4 to 50 micrometer and after that

you have far infrared, IR. So, that is goes till 1000 micrometer.
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So, your energy of molecule during vibration.  So, first  thing when we deal  with Vibrational

Spectroscopy to know what is the energy of molecule during vibration. So, 2 atoms as a 2 balls

and bond between this can be taken as a spring and what happened during vibrational it is going

like this. So, some time it is getting stress, sometime compressed extension and comparison and

that is what you can associate with vibration of a molecule.
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So, let us think about how to calculate energy. So, suppose an atom is here and then it is bound to

a wall and this is your equilibrium distance from the wall. So, here equilibrium distance, then if

suppose, if you extend it, then what will happen? So, suppose you extend by this much amount,

so, this distance is your, this total distance is your X and this distance is Xe. So what will happen

that if displacement is towards right hand side, then a force will act just oppose it to this force

will act opposite to the direction of displacement.

And that is why force is your proportional to this displacement, proportional to this displacement

and this negative sign tells you that direction of displacement and force will be just opposite to

each other. And your this displacement is basically your X minus Xe, displacement is your X

minus Xe. So, if we want to know how this system changes its energy, we need to solve your

Newton's law of motion. 
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So, Classical Physics Treatment what we are going to discuss is classical physics treatment. Here

we know that force is minus KX. So, what we now taking as that just think about this. So, we

have this system and now what I did is, I put my axis at the atom. So in that case your Xe will be

0, Xe will be 0 and then X minus Xe will be equal to X. And in that case force will be given by

simply minus K into X. We know that, force is equal to mass into acceleration, so, this is your

mass and this is your acceleration, acceleration nothing but second derivative of position with

respect to time or displacement with respect to time, is, so, this is ma I is equal to minus KX.

And now, we can just  simply put this m here,  we can bring it  here.  So,  now you have this

equation, which is your differential equation, second order differential equation. Now, if you will

be able to solve this you can get your frequency of vibration or energy of vibration. 
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So, again we will go for Classical Physics Treatment. So, solution of that differential equation is

your X is equal to A sin omega t plus b cos omega T. So, suppose if you do dx by dt what you are

going to get is your A omega cos omega t minus B omega sin omega t. And if you do double

differential of this, what you are going to get is for cos omega will be minus so, minus A omega

square sin omega t minus B omega square into cos omega t. So, you can see that your, it is

basically simply minus omega square A sin omega t plus B cos omega t and this is nothing but X.

So, you have d2x by dt square is equal to minus omega square X, minus omega square X. So, for

this kind of differential equation, for this kind of differential equation your solution is X is equal

to A sin omega t plus B cos omega t again you can look at dx by dt is equal to, if you take

differential of sin omega t with respect to t, you will get omega into cos omega t. So, that is what

we have written A omega cos omega t for this differential will be minus B omega sin omega t.

And when you do double differential, differential of cos omega t with respect to t is minus sin

omega t multiplied by omega. So, what you are going to get is A omega square with minus sign

into sin your omega t and for this you will get minus B omega square cos omega t. So, this is

basically minus omega square. If you take common, then you will get A sin omega t plus cos

omega t. 
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So, you have this equation and if you remember, the last equation for this vibrating system is

your this. So, if I put K by m is equal to omega square and I can get the solution and that is what

we have done this. We have taken omega A square is equal to K by m and so, our solution is this,

A X is equal to A sin omega t  plus B cos omega t.  And now your omega which is angular

frequency will be equal to root k by m and your frequency or vibration will be equal to 1 by 2 pi

root under k by m, root under K by m. So, you can get the solution for energy.

(Refer Slide Time: 08:54)



 Unfortunately, what this Classical Physics Treatment tells you that energy can take any value,

energy  can  take  any  value  and its  value  will  depend on displacement,  displacement.  Since,

displacement can take any value and energy can also take any value, which is not consistent with

experimental data. Because, what we know from the experimental data that energy is quantized,

energy is quantized.

(Refer Slide Time: 09:26)

And, so, Classical Physics Treatment is not enough. What we need to do is Quantum Mechanical

Treatment, it is important because the vibrational energy levels are quantized and the way we can

get the energy, energy of different energy levels is by solving Schrödinger equation. 
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And we already note that Schrödinger equation is basically in Schrödinger equation you apply

Hamiltonian operator on the wave function to get the energy as Eigen value. So, just we saw that

in the, this kind of model, your psi is a function of X. We are going to apply Hamiltonian on our

this wave function, vibrational wave function and then what we expect that will get the energy

value. Again Hamiltonian operator has 2 different part, 1 is your kinetic energy operator and your

potential energy operator and kinetic energy operator will be given by this differential. Since psi

is only function of X here, so, we have only one term, where your you have a differential with

respect to X. So, next step is to calculate potential energy. 
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So,  we know force,  force  is  given by minus  K X minus  Xe for  this  system.  Now, we can

calculate the potential energy by integrating this and integrating this with respect to X. So, your

potential energy is integral minus FdX, integral minus FdX, or F is your force is basically minus

dU by dX. So, dU is equal to minus FdX. So, if now you see that again here, so, what you will

get  is  when you  integrate  that  you  will  get  the  potential,  potential  energy  is  given  by  this

equation U is equal to half K X minus Xe whole square.

Now, you see if I put my coordinate system such that our atom is at origin, then your Xe will be

0 and F is minus KX and your U is equal to half KX square. So, this is equation of parabola. So,

if we plot U versus X you will get something like this. So, your plot of U versus X and its slope

will give you F because F is equal to minus dU by dX. So, slope with negative sign will be equal

to force. So, now see this if you are in this direction, your slope is positive.

So, here you are talking what X is positive, X is positive means there is like you are extending

this and force will be towards left hand side So, force will be like this, ok. So, if we take slope

here and you see this slope is positive and your F direction will be negative, F direction will be

negative. So, this will be this side. Now, second case you can take of when you are compressing

this whole system, what will happen that your since displacement is towards left hand side, your

displacement is negative, displacement is negative.



So, you are dealing with,  with this  region, here,  force will  be,  since displacement  is  in this

direction your force will be in this direction, force will be different. And, if you look at the slope

here, your slope is negative. And so, F is going to be positive, positive means towards the right

hand direction. So, this basically tells you how potential energy changes with your displacement. 

(Refer Slide Time: 13:42)

So, now we know kinetic energy operator, we know potential energy operator, now we are going

to get Hamiltonian operator and finally we will apply to wave function to get the value of E. So,

this is your Hamiltonian. This is kinetic energy part and this is potential energy part. When we

apply to the wave function of vibrating system, we have Schrödinger equation. And if we are

able to solve this we can get the energy value for different vibrational levels. So, we just put the

value of potential energy half KX square and now, we need to solve this. 
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So, this is your Schrödinger equation and the way we start solving this is to make it in the form

of a known differential equation which solution is known. And the way we do it is to simplify a

bit. So, what we did is here this can be h by 2 pi is h bar and so, we express this in terms of h bar

to just simplify it. So, this is another form of your same Schrödinger equation. And now what we

will do is we want to remove this coefficient from this double differences. So, the way we can do

is simply multiply this by minus 2m by h bar square, minus 2m by h bar square and when you do

that, this becomes 1 and here again you are multiplying by 2m by h bar square.

And if you bring this, this side there will  be again 2m by h bar square. So, now we have a

differential equation which is a bit more simplified. And now we will look for its solution, ok. 
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So, the second simplification which we can do is, is simply this. So, this is the second order

differential and then you can take X square terms here and the rest is mk by h bar square and

similarly, you have 2m by h bar square E.

Now, if suppose we take this mk by h bar square is equal to alpha square and 2 m by h bar square

is equal to v, 2 v plus 1 alpha. We will get equation. Now, question why we are doing this?

Because solution of this is already known, solution of this kind of differential equation is known.

By assuming that alpha square is mk by h bar square and 2v plus 1 alpha is 2m by h bar square

into E. So, using this 2 we can calculate the energy.

So,  first  we  will  calculate  energy  and then  we  will  get  to  solution  of  this  the  Schrödinger

equation. 
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So, alpha square is mk by h bar square. And this is the second assumption which we took, 2v

plus 1 alpha is 2m by h bar square into E. Now, just put in this 1. So, alpha square will be 2m by

h bar square, E square divided by 2 v plus 1 square. So, this is from the second assumption is

equal  to  mk by h bar  Square.  And if  we cancel  both side,  there  are  some terms  which  are

common if we cancel then what you will get is 4m by, 4m by h bar square from this term, 4 m by

h bar square into E square is equal to k, 2v plus 1 square, k 2v plus 1 square and now, we can get

E square.

So, E square is simply you just take to this side and you will get E square and if you just take a

square root, you can get the energy and since we know that this is h bar 2 root under, root under

k by m is omega. So, we can simply write 2 v plus 1 h bar by 2 omega and then your, you can

also write like this v plus half h bar omega. So, this is your energy for vibrational level and v is

your new quantum number, v is your new quantum number.

So, now, you can see that now energy is quantized, we can only take integer value, we can only

take integer value and so, energy is quantized and this is quite different from energy which we

obtained  in  classical  physics  treatment.  So,  this  is  your  1  of  the  advantage  of  quantum

mechanics. 
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Now, solution of the differential equation which is just written in simplified form the solution is a

Gaussian Function. So, now you can recall why we are trying to simplify it because for that

differential equation already solution is known, that differential equation is basically differential

of a Gaussian Function, differential of a Gaussian Function. So, let us take the first case and we

are trying to solve the differential equation for v is equals 0.

(Refer Slide Time: 19:22)

So, v is equal to 0 this differential equation will be, simply this will become 1, simply this will

become 1. 
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Now, we can see the solution of this. So, suppose we started with psi x is equal to exponential

minus alpha x square by 2. If we take the first differential,  that is what we are going to get

because differential of minus alpha x square by 2 is minus alpha x.

So, we will (got) get first differential is minus alpha x exponential minus alpha x square by 2. If

we differentiate again with respect to x, what we are going to get is simply this. So, here first x is

differentiated, taking other constant and then your x is taken as constant and then differential of

this and so, you get this equation. And what you do get is the double differential is minus alpha

and this is psi X, that is what we assumed here psi X plus alpha square X square psi X and this is

your differential equation (())(20:29) but this is the exact differential equation when v is equal to

0, ok.
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So, for v is equals 0, the solution is exponential minus alpha x square by 2. Now, we know what

is the wave function for your ground energy level, ground or v is equal to 0. 
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So, let us think about what is the energy of that. Energy is simply h bar by 2 pi k by m. So, now

we have found 1 Eigen value and 1 Eigen function, omega is equal to root k by m. So, we can

simply write E is equal to half h bar omega or half h nu and this is your ground state energy.



(Refer Slide Time: 21:20)

Now, we will go to V is equal to 1 and try to see what will be the solution. So, if you remember

that this is your differential equation. If I take V is equal to 1 what I am going to get is 2 into 1

plus 1 means 3 alpha psi X and now we are trying to look at the solution of this, ok. 
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So, solution of this is again known and this is your x multiplied by exponential minus alpha X

square by 2. So, it is different then e the solution for the solution, wave function of the ground

state,  wave function of the V is equal to 0 level was simply exponential  into minus alpha x

square by 2.

But, here we have another term differentiate it in the similar way, what we did for a ground state,

so psi dash X, which is the first differential will be given by this equation, the double differential

will be given by this. And if you simplify this, what you are going to get is psi double dash X is

equal  to minus 3 alpha psi  X plus alpha square X square psi  X and this  is  nothing but the

differential equation for V is equal to 1, differential equation for V is equal to 1 when I put V is

equal to 1 I get this.

So, this is your Schrödinger equation for vibrational level, Schrödinger equation when V is equal

to 1. So, what we saw that if we have a wave function is equal X into exponential minus alpha X

square by 2, we can get the solution of the wave function for V is equal to 1. Similarly, we can

get solution for each of V, for example, if V is equal to 2 and you can simply write 2 into 2 plus 1

and then you solve it and solution of these things are already known.
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So, what we have seen is the solution of Schrödinger equation for different value of V and for V

is equal to 0, it is simply constant multiplied by exponential minus alpha X square by 2. If V is

equal to 1. Then, wave function is your 2 X multiplied by exponential minus alpha X square   by

2. And similarly, we also looked at solution when V is equal to 2 and what we we found out is

that solution is your 4 X square minus 2 multiplied by exponential minus alpha X square by 2.

Similarly, if we look at solution for V is equal to 3, your solution is constant multiplied by 8 X

cube minus 12X multiplied by exponential minus alpha X square by 2. So, if you look at all

solutions, for different vibrational level what you will find it that exponential minus alpha square

by 2 is common, what is changing is your of function of X. So, in this case, it is simply 1. And

when V is equal to 1, this is 2 X and when V is equal to 2, that is your to 4 X square minus 2 and

when V is equal to 3 this function is 8 X cube minus 12X and your this function is denoted by

your Hv, where H is known as Hermite Polynomial.

So, in 1 equation you can give, a 1 equation you can give the solution of wave function for level

V and that will be psi VX is equal to constant multiplied by Hermite Polynomial into exponential

minus alpha X square by 2.  So,  this  Hermite  Polynomial  is  a  function of X, which will  be

different for different value of V, different value of V. 
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So, when V equal to 0, Hermite Polynomial is 1 and V is equal to 1 Hermite Polynomial is 2 X,

when V is equal to 2 Hermite Polynomial is 4X square minus 2 and when V is equal to 3 your

Hermite  Polynomial  is  8  X  cube  minus  12X  and  similarly,  you  have  different  Hermite

Polynomial for different value of V.
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So,  what  we have  seen right  now is  your  psi,  the  solution  of  the  Schrödinger  equation  for

vibrating system is given by Nv into Hv into exponential minus alpha x square by 2, that is what

I just talked about this is called your Hermite Polynomial and Nv is equal to, your this is your



normalization factor and Ev will be given V plus half h nu, V plus half h nu or V plus half h bar

omega h bar omega.  So, for different  value of V there will  be different  solution,  but,  those

solutions is related to Hermite Polynomial and energy for those vibrational level can be given V

plus half h nu.

So, and V is your vibrational quantum number and again you can see that since we can only take

integer values. So, energy your vibrational levels are quantized. 
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Now, we will discuss about Hermite Polynomial a little bit. So, Hermite Polynomial is basically

given by 1 single equation and that is written here. What is that, it is simply minus 1 power V

and then exponential X square multiplied by this differential. Now, you can think of if V is equal

to 0 then what will happen this will be 1 and this whole thing, this will be 1 and so, everything

will be 1 and what get is 1, when we solved the Schrödinger equation and for V is equal to 0

Hermite Polynomial was 1.

For the V is equal to 1 you can again solve this and this is minus 1 power 1 ex square d by dx

exponential minus x square. And if you differentiate this, what you will get i exponential minus

Xsquare  into  minus  2X and minus  1  power  1  and  this  2  becomes  1,  these  are  exponential

multiple of 2 exponential and this becomes 1. So, what you get is simply 2X. 



Similarly, we can get Hermite  Polynomial  for second vibrational  level  by again solving this

equation, so minus 1 square ex square d 2 by dx square exponential minus X square. So, first you

will get same term. So, this is the exponential minus X square into minus 2 X and now you have

to differentiate again and what you will again get is this terms multiplied by 4 X square minus 2

and this comes out to be 1, so, you have 4 X square minus 2. And so, if you remember that

Hermite Polynomial which we solved was for V is equal to 0 it was 1 and for V is equal to 1 it

was 2 X and for V is equal to 2 plus 4 X square minus 2. So, Hermite Polynomial can be given

by 1 simple equation, which is shown here, shown here, ok. 
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There is another property of this Hermite Polynomials and they have a Recurrence Relationship.

What does that mean? That if you know 2 previous Hermite Polynomial then you can get the

next Hermite Polynomial. So for example, if you know Hermite Polynomial for V is equal to V

and for V is equal to V minus 1, then you can get Hermite Polynomial for the V plus 1 level and

the equation is here.

So, Hermite Polynomial for V plus 1 level is given by 2 X into Hermite Polynomial for level V

minus 2 V Hermite Polynomial for a level V minus 1. So, for example, if I want to calculate

Hermite Polynomial for V is equal to 2, then we can take help of Hermite Polynomial for level 1

and for level 0 and we know that Hermite Polynomial for level 0 is 1 and Hermite Polynomial

for level 1 is 2 X. So, we can calculate Hermite Polynomial for level 2.



So, now see here that, we are calculating here for the level 2. So, 2 X into Hermite Polynomial

for level 1 minus 2 into 1 into Hermite Polynomial for level 0 and now put Hermite Polynomial

for level 1. We know that the value is 2 X, and Hermite Polynomial for level 0 is 1, so, you just

put it here and what you can be able to get is Hermite Polynomial for level 2. And this is for X

square minus 2. Similarly, by using Hermite Polynomial for level 1 and Hermite Polynomial for

level 2, you will be able to get the Hermite Polynomial for level 3.

And that is what we have done here that we are calculating Hermite Polynomial for level 3. And

this is, this can be expressed in terms of Hermite Polynomial for level 2 and Hermite Polynomial

for  level  1.  We know Hermite  Polynomial  for  level  2  is  4  X square  minus  2  and Hermite

Polynomial for level 1 is 2 X, so we simply multiply 2 X into Hermite Polynomial for level 2

minus 2 into the V into Hermite Polynomial for level 1 and when we do that, we can get Hermite

Polynomial for level 3 and that is equal to 8 X cube minus 12 X, 8 X cube minus 12 X.

So, this kind of, this, Polynomial has some very important features which we need to keep into

mind. But, by solving the differential equation coming out from Schrodinger equation, we can

calculate what will be the wave function corresponding to a particular vibrational level and what

can be the energy for the, for that vibrational level. And, we can calculate energy of transition. 
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And that is equal to your; if suppose you are going from the transition is from the level V to level

V plus 1 then we can simply get Ev plus 1 minus Ev and if you do that, this comes out to 2v, we

will see that 2v 2v cancels out 3 minus 1 will give you 2.

So, 2 2 cancels out, so this is simply h bar and under root k by m, where your (k) root under k by

m is omega. So, your delta E will be equal to h bar omega, h bar omega. 
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So, for transition between 2 allowed levels, your delta E is going to be h by 2 pi root under k by

mu. Here we have replaced m by mu because we are dealing with more than 1 atom and here mu

is reduced mass and k is again force constant so, h by 2 pi root under k by mu. So, frequency of

transition is going to depend on mu and k. 
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So, nu is equal to frequency, mu is equal to reduced mass, k is equal to spring strength and here

we can relate it to bond stiffness. So, if bond is stiffness is high what does that mean k is high

and so nu will be high. And if mu is greater, then your nu is going to be low. So, nu is directly

proportional to the strength of bonding between 2 atoms where nu is inversely proportional to

reduced mass of two atoms. This is very important because this explains why frequency is high,

why frequency is low. 
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So, let us discuss some example. So, here we are talking about a Stretching Frequency. So, let us

think about stretching frequency of CH bond, CD bond and CC bond. And as we know that your

atomic weight of C is higher than deuterium, which is higher than hydrogen. So, as we go down

from CH to CC, from CH to CC your mu value is going to increase and if mu value is going to

increase, what you expect that, nu will decrease, ok.

So, nu will decrease or delta E will decrease. So, here you see that delta E value in kilo cal and

this is the the second value and parentheses in kilo Joule. So, this is decreasing with increase in

value of reduced mass. And that is why your wave number is also decreasing, wave number is

also decreasing and this is in centimeter inverse, so you are going from 3000 to 1200, ok. We

will look at the effect of K, it is Bond stiffness and as we know that bond stiffness is going to be

higher, if you move from single to triple bond.

So, triple bond is more is stronger compared to double bond and double bond is more stronger

compared to single bond and so, energy is going to increase with increase in k value. Because if

you remember energy is proportional to root under k and your wave number is again going to

increase with increase in the stiffness, increase in the stiffness. So, there are 2 very important

factor, first is your k which relates to Bond stiffness, where second is your nu which relates to

atomic mass of an atom, ok and mu is basically your reduced mass.

So, frequency decreases with increasing atomic weight and frequency increases with increasing

bond strength,  increasing bond strength.  So,  here it  is  bond strength.  Since,  frequency in IR

spectroscopy is dependent on k and mu, this can be utilized to know the functional group up the

compound, given compound and that can help you in the structure determination of unknown

compound.
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We will see some of the examples. So, here we have IR spectra of alkane, alkene and alkyne and

we have your hexane, 1 hexene and 1 hexyne. And now, you can see that in case of alkane, we

can look at 2 different frequencies, 1 corresponding to CH bond and other corresponding to CC

bond. CC bond. And now, you see that when you go from CH bond to CC you are basically

replacing 1 hydrogen by another carbon. And so, what you expect is nu is going to be higher in

case of CC bond, nu is going to be higher in case of CC bond and thus frequency is going to be

lower for the CC bond compared to CH bond, compared to CH bond. Since, your frequency is



inversely proportional to your reduced mass, reduced mass and reduced mass is higher for CC

bond in comparison to CH bond.

Now, if we go from alkane to alkene, what we can see is that this CH frequency is moving to

higher wave number, moving to higher wave number and this  is related to the fact that if k

increases for a bond, then frequency will increase, k is related to bond strength, k related to bond

strength and CH bond strength is higher when H is attached to SP2 carbon, comparison to when

H is attached to SP3 carbon, H is attached to SP3 carbon.

So, CH bond strength is higher and thus higher in alkene and so, your wave number is going to

be at higher number. Same is the case when you move from CC bond in alkane to CC bond in

alkene, CC bond in alkene. So, here there is a double bond between C and C in case of alkene

and so, bond strength between C and C will be higher in case of alkene in comparison to alkane

and so, your wave number is going to be higher and that is why you can see that CC bond in

alkane is that frequency 800 to 1300 centimeter inverse, where C double bond C in alkene comes

at 1640 to 1680 centimeter inverse. 

Similarly, if you move towards alkyne, C triple bond C is certainly going to be of higher bond

strength comparison to C double bond C and which is higher, which is higher in bond strength in

comparison to CC single bond. And so, when we move from CC bond, when we move from CC

bond of alkane to CC bond of alkyne, there is increase in the wave number. And similarly the

case  with  hydrogen  attached  to  your  SP carbon,  so,  hydrogen  attached,  when  hydrogen  is

attached to SP carbon, the bond is strength of CH bond is going to be higher in comparison to

when hydrogen is attached to your SP2 carbon or SP3 carbon. 

Since, SP carbon, in SP carbon your percentage, (())(41:52) strength is higher in case of your SP

carbon and so SP carbon is more electronegative and thus, electro negativity difference between

SP carbon  and  hydrogen  is  highest  and  your  bond  strength  is  higher.  Now, you  see  in  the

spectroscopy, this is your CH for alkane and that comes out to be within this range. And then if

you go to alkene it is moving towards left hand side which is towards higher wave number.

You see it is here, here and then in alkyne CH frequency is at higher number. So, there is a shift

of CH frequency from lower to higher when we move from alkane to alkene and to alkyne and

similarly the case of CC and you will see this is CC for alkane, this is CC for your alkene and



this is CC bond for alkyne. And you see this is going towards higher wave number side. So, just

by looking at your CH frequency and CC frequency, you can distinguish between 3 different

kind of hydrocarbons.
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Aromatic compounds has benzene ring and benzene ring has some characteristic features which

you can see in the IR spectra and so, to know that where the compound or whether the molecule

has benzene ring or not IR can be utilized, IR can be utilized. And if you look at the benzene, so,

there will be like this kind of bond and this comes around your 30 30 centimeter inverse, 30 30

centimeter  inverse  which  is  here.  So,  this  is  characteristic  of  your  benzene  ring,  this  is

characteristic of benzene ring.

What you are looking at is phenyl acetylene, phenyl acetylene has benzene ring and so, you will

get 1 peak around 30 30 centimeter inverse. And then you have like some peaks between 1660 to

2000 centimeter inverse and that is that are quite big and they are called when ‘benzene teeth’,

benzene teeth and you can see this these are those peaks, these are those peaks and this is typical

of substituted benzene and then you have some medium range peaks or peaks with medium

intensity which comes between 1450 to 1600 centimeter inverse and that you can see here. 
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 Alcohol, (ami) amines has characteristic peak which can be observed in IR spectroscopy. So, for

alcohol, you will get a peak around 3400 to 3650 centimeter inverse and they typically broaden

with hydrogen bonding. So, a broaden peak, a very broaden peak around this  3400 to 3650

centimeter  inverse  indicates  not  only  OH  bonding  but,  but  also  OH  undergoing  hydrogen

bonding,  undergoing  hydrogen  bonding.  Similarly,  NH can  be  seen  by  your  sharp  medium

intensity peak around 3300 to 3500 centimeter inverse. So, as very sharp peak at 3300 to 3500

centimeter can indicate towards amine functional group in the compound. 
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Now, on what factor intensity of a spectral lines depend? We have already discussed that what

are the different factor on which intensity can depend. One is your based on transition dipole

moment and second is based on your Boltzmann distribution. So, here we will just discuss your

transition dipole moment for vibrational transition, but transition probability between 2 state is

given by your phi final to initial state.

So, here function of final state and function of your initial state multiplied by your what is known

as Transition dipole moment, ok and this is also shown by this notation. If this integral in non-

zero then transition is allowed, if it is 0 then that is not allowed. So, here we will use vibrational

wave function. So, suppose we are going from V is equal to 1 to V is equal to 2 then you have to

take wave function of the second vibrational state and first vibrational state. So, you are going

from 1 to 2. So, then this will be psi 1 and this will be psi 2. So, psi 2 into mu operator multiplied

by psi 1 d tau, if this is non-zero then your transitions are allowed, ok. 
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So, again transition dipole moment is  given by this.  I  already discuss about that.  Now, here

transition dipole moment is  a function of x,  function of x. So,  it  depends on location of all

electron and nuclei when it is inter molecular distance or we can say that if it is in equilibrium

position then mu is given by mu naught which is basically permanent dipole moment, but this is

when it deviates from the equilibrium position. So, your mu is equal to mu naught plus del mu by



del x this is first derivative of mu with respect to x, multiply by x and then this is the second

term. We will just put it here and see what happens. 
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So, if you do that, again, we replaced psi F by VF just denote wave function of vibrational state

and this is your I initial state. So, let us go back. And you see here, if I put this mu naught mu

naught is constant it will come out and you left with VF Vi d tau, VF Vi d tau. So, that is what we

are getting mu naught VF Vi d tau plus del mu by del x 0 VF X VI d tau. This is the second term

and the third term which we are going to neglect. If we assume that there is small displacement

from equilibrium position then we can neglect the higher terms, ok. 

Now, we know that the 2 wave function, vibrational wave function are orthogonal, so, they are

integral of VF Vi which is basically wave function of final vibrational state is VF and VI is the

wave function of initial vibrational state. So, this is going to be 0 and if this is going to be 0 so

you are left with 1 term and this should not be 0 if the transition is allowed, ok. 
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So, this is your the second term and what I told you that this should not be 0. If transition is

allowed. This can be 0 del mu by del x are (())(49:44) is 0. What does that mean is if suppose this

is 0, then everything is going to be 0. So, this should not be 0. What does that mean? What does

this represent?

This represent that if x changes mu is not changing, x changes mu is not changing. So, if it is not

changing it means del mu by del x is equal to 0. If it is changing, then it will not be 0. So, first

selection  rule  is  that  electric  dipole  moment  of  molecule  must  change  and  the  atoms  are

displaced related to 1 another and that is called your if it happens then such vibration are known

as ‘infrared active’, ok, it is valid for polyatomic molecule, certainly.

The second thing is now, the second term mu can be 0 if second term is 0 so, this should not be

0. And if we solve this what selection will we get is delta V is equal to plus minus 1. For delta V

is equal to plus minus 1 this integral is not going to be 0, this integral which I am talking about is

not going to be 0 and that is why this is another selection. So, there are 2 part of the selection

rule,1 is  your electric  dipole moment of the molecule must  change during vibration and the

second is delta v is plus minus 1. 
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So, that is what is well known selection rule for vibrational spectroscopy that vibration in homo-

nuclear diatomic molecule generally does not create variation in mu. So, you cannot study them

with IR spectroscopy, Ok. For homo-nuclear diatomic molecule, because what selection rules

tells that it, must your dipole moment must change during vibration then only you can see, then

only that transition is allowed.

So, a molecule without a permanent dipole moment can be studied. So, it does not mean that we

cannot study any molecule, which does not have permanent dipole moment. What matters is that

your dipole moment must change during vibration, during vibration. So, for example in the case

of carbon dioxide if you take anti stretching, where one is going extended and other is getting

compressed then there will be change in dipole moment during vibration, although it does not

have a permanent dipole moment and so this can be study through IR spectroscopy.
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Now, again 1 thing we must keep in mind that your intensity is proportional to, let me see here,

intensity is proportional to this intensity is proportional to this quantity. Okay, mu Fi Square, ok

and mu Fi square is basically if you do a square, so, your intensity will depend on square of this.

So, what does that mean is, it is not always true that if, if the selection rule is satisfied, it means it

is the most intense peak because what I told you that it also will depend on how mu changes with

R.

So, mu changes with R in this fashion, mu changes with R in this fashion. It is not constant at

every distance. So, for example, if distance between 2 atoms is 0, means you are like 2 molecules



are upon each other and there is no dipole moment and if they are very far apart then again there

is no dipole moment. And so, you see here, it is at very low distance and very high distance, R is

equal to 0 and R is equal to infinity is going to be 0 okay.

So, and in between there is going to be maximum dipole moment in between this 2 value, R is

equal to 0to R is equal to infinity. If you look at this that at maxima, at maxima, your d mu by dR

is going to be 0. So, again dipole moment will not change at the this R value, at this R value

where the there is maxima., but again if you go to this side or that side mu value is changing with

R and that is how; So, again your intensity will depend on where is your, how does mu changes

with R rather than just only on selection rule.

So, if suppose Re is here, this Re is at the maximum then at this position your dipole moment

will also not change. So, spectroscopic selection rule does not tell us about intensity at least in

vibrational case and, and you have to look at how dipole moment changes with inter-nuclear

distance, ok. 
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So, till now we talked about harmonic oscillation and the lowest vibrational transition, lowest

vibrational transition atomic molecule, approximate the quantum harmonic oscillator and can be

used to calculate your bond force constant for a small oscillation.



And for that if it is harmonic oscillation, then delta V is equal to plus minus 1, it means transition

is  allowed.  But,  this  potential  does  not  apply  to  energy  close  to  dissociation  energy.  This

potential does not apply to energy. This is a very important point that, if you go towards the

dissociation energy, then this potential is not going to apply and for molecular dissociation do not

a parabolic potential and what we have is what is known as anharmonic oscillator anharmonic

oscillator. So, this is anharmonic oscillator. 
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So, you see molecular potential energy verses inter-nuclear separation. This parabola is for your

harmonic oscillator, but at higher R value your anharmonic oscillator potential is going to be

different. So, things like this, if I; suppose this is your bond and if I stretch stretch it, at 1 point it

will just break. You cannot go stretching till infinite distance. So, bonds are not like harmonic

oscillator, it is at 1 point it is going to break at that point, what you see molecule are, molecule is

dissociation, di atomic molecule is dissociated.

So, at high excitation energy the parabolic approximation   is poor because at high energy you

can see that you have a dissociation energy and your this harmonic oscillator equation is not

going to be applied. So, you have to apply some something called asymmetric potential or Morse

potential. So, in Morse potential your V is equal to potential energy is hc dE where d is your

depth, d is depth, 1 minus exponential alpha R minus Re square and your depth can be calculated

using this equation what we will discuss this in detail.
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So,  bonds  are  not  a  harmonic  oscillator  they  are  like  Anharmonic  Oscillator,  if  we  solve

Schrödinger equation using this most potential what we are going to get is, again we can get the

energy levels and energy levels is given by Ev is equal to this whole term, V plus half hc omega

E,  again omega is  wave number minus at  equilibrium position,  minus V half  square XE hc

omega E, Xe is called anharmonicity constant.

So, there is  several  terms here,  but generally  we consider only 2 terms because for a small

displacement those can be neglected. This energy term can be converted to wave in the wave

number unit and by dividing by hc. So, that is what we have done and now we define this as a

term Gv, which is basically a wave number, wave number unit. So, V plus half omega E minus V

plus half square Xe omega E plus V plus half Q pi E hc, ye is again another anharmonicity

constant. At very high vibrational level, your energy is going to converge, energy is going to

converge and it is not going to be infinite, ok. 
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So, how do we calculate this omega E and Xe We? So, we know what is the selection rule for

vibrational levels. So, GV plus delta V is plus minus 1. So, if we calculate GV plus 1 minus GV,

what we will get is omega E minus 2 Xe omega E V plus 1 and we can neglect the higher terms

we can neglect the higher terms and this gives you a very important tool to determine the value

of omega E and Xe We. 

So, if I plot GV plus 1 minus GV verses V plus 1, you can see GV plus 1 and this we can get

from IR spectra, the wave number 4 V plus 1 and this GV. So, this we can get from Vibrational

Spectroscopy, if we plot this V plus 1, your intercept will be omega E and your slope is going to

be minus 2 Xe omega E. So, this gives you a tool to calculate omega E, omega E Xe and since

De is related to omega E and omega E Xe, De is basically omega E square by 4 Xe omega E and

so, you can calculate also dissociation, you can calculate dissociation energy. 
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So,  till  now  we  are  discussing  Vibrational  Spectroscopy.  Now,  we  will  go  to  Vibrational

Rotational Spectroscopy. We already discussed Rotational Spectroscopy. So, what we are looking

at in Rotational Spectroscopy that we are observing transition between rotational energy level

associated with same vibrational level. So, for example, V is equal to 1 then within that there is

rotational  levels  and then you are seeing for V is  equal  to 1 only you are trying to look at

rotational level from 0 to 1 or something like that.

But, in the rotational,  Vibrational Rotational Spectrum, you are looking at transition between

stacks of rotational energy level associated with 2 different vibrational levels. So, here V is, you

are not looking at V is equal to 1 and J is equal to something to V is equal to 1 and J is equal to

something, what you are going to look at V is equal to 1 to V is equal to 2, V is equal to 1 to V is

equal to 2 and then you are trying to look at different rotational level, different rotational level.
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So, what I mean by this is given here, so, you can see that here you are going from 6 to 6 in

vibrational level you see these are 2 different vibrational level. V dash and V double dash and

you are going from 1 vibrational level to another vibrational level. So, transition is not between

these rotational  level or transition is not between these rotational level,  transition is between

rotational level, different rotational level of different vibrational levels.

So, you are going from 6 of V double dash to 7 of V dash, 7 of V dash. And again delta J is equal

to plus 1 and delta J is equal to minus 1, this is your selection rule. So, you see this is you are

going from 6 to 7, 5 to 6. So, this is delta J is equal to plus 1 and that is called R branch, R

branch and here you have you can see that you are going from 7 to 6, 7 to 6. So, your delta J is

minus 1, your delta J is minus 1 or the vibration is you are going from V double dash to V dash,

but now you are going from seventh level in V double dash to sixth level in V dash and that is

called your P branch.
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And energy of vibrational  rotational  level  can be written the way we have derived for your

vibrational rotational. So, this is for vibrational and this is for rotational, rotational spectra. So,

what we are going to neglect is the second terms here, which is because of this is for anharmonic

and this is because of distortion. 
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So, we can calculate wave number of RJ. So, what we did is for V is equal to plus minus 1, V is

equal to plus minus 1, you will get simply omega naught, your wave number will be simply

omega naught and this is for rotational, you are going from J to J plus 1.



So, J to J plus 1 you will get simply. So, you see this is for J plus 1, this is for J. So, what you are

going to get is omega naught plus 2 BJ plus 2B. So, this is your wave number for R branch.

Similarly, you can calculate wave number for P branch which is going to be this, omega naught

minus 2BJ. So, I will stop at this point. In the next lecture we will discuss your Vibrational

Rotational Raman Spectra.


