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Lecture 19
UV Visible Spectroscopy of Conjugated Molecules
Hello students, welcome to the lecture on UV visible spectroscopy, in the last lectures I
have discussed about electronic spectroscopy of metals or elements and diatomic
molecules, in this lecture I will discuss about electronics spectroscopy of conjugated
systems, [ will also discussed about how your particle in a box concept, which we studied
in quantum chemistry will be apply to understand spectroscopy of conjugated system and

the spectroscopy of Nano systems.
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UV-Visible spectroscopy

* Absorption of light in the UV/Visible part of the spectrum (210 - 900
nm).

* The transitions that result in the absorption of electromagnetic
radiation in this region of the spectrum are transitions between
electronic energy levels.

* Generally, the most probable transition is from highest occupied
molecular orbital (HOMO) to \owest%‘&cupied molecular orbital
(LUMO). "
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So, let us go ahead and discuss the electronics spectroscopy of conjugated system is generally
known as UV visible spectroscopy, UV visible spectroscopy is quite often used in organic
chemistry in organic chemistry physical chemistry and bio chemistry, so in UV visible
spectroscopy we deal with absorption of light in UV visible part of the spectrum, which is

basically extends from 210 Nano meter to 900 Nano meter.

As I discussed earlier the transitions that results in the absorption of electromagnetic radiation
in this region of the spectrum are basically transitions between electronic energy level and
generally we are concerned about the most probable transition and the most probable
transition is from highest occupied molecular orbital HOMO lowest unoccupied molecular

orbital LUMO. So, please change this to unoccupied so most probable transition is from



HOMO to highest HOMO means highest occupied molecular orbital to LUMO which is

lowest unoccupied molecular orbital.

(Refer Slide Time: 3:13)

Introduction

Probes the various excited states of the
system.

Light in the UV-VIS part of the
spectrum 15 used to promote electrons
from the  ground state to various
excited states
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In UV visible spectroscopy we prove the various excited states of the system, so here is your
ground state this is exited electronics state so we prove in this spectroscopy we prove the
various excited states of the system. Here light in UV visible region used to promote your
electrons from the electrons from the one electronic level to another electronic level one

electronic level to other electronic level.

Basically we are going from ground electronic state to various excited electronic stats. The
particular frequency at which light is absorb are affected by structure environment of the
chromophore, so here we are going to discuss about conjugated double bond system as
chromophore and structure and environment of the chromophore well decidable the
frequency of the transitions frequency of the transition your electrons an exited state can

return to ground state by vibrational transitions through small energy increment.

So, we will first come to here and then it can also come back to your ground state absorbed
energy appears ultimately as heat in solution when the exited electron returns to ground state
by vibrational transitions in that case absorb energy appears as heat in the solution. So this is
called non radiative transition this is known as non radiative transition, I will also discuss the
radiative transition from exited electronic state to ground state when I will discuss

florescence.
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Types of Electronic Transitions

* Electronic transitions in organic molecules: o > 0 *,n > o*, n> n* andm > n
* transitions. — I S

+ Electronic transitions in inorganic transition metal complexes - The manner in
which the five d orbitals split depends on the nature of coordination 3
(octahedral/tetrahedral/square planar). J

* Charge transfer transition takes place in complexes in which there is a donor and
an acceptor group of electrons.

* Electronic transition in conjugated system- The most significant transitionis = 7
1 * transition. =

= .
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The type of electronics transition are, in organic molecule basically we deal with sigma to
sigma star, n to sigma star, n to pie star and pie to pie star transition, in inorganic transition
metal complexes we again come across electronic transition and that is basically our dd
transition and in that dd transition will be governed by the manner in which 5 d orbital splits
on the nature of or when ligands comes to metal the 5 degenerate d orbital of metals splits
into two different groups or three different groups depending on the nature of coordination

nature of coordination can be of three types octahedral, tetrahedral, or square planner.

Charge transfer transition are also electronic transitions they happen in UV (())(6:52) region
and it take place in complexes and which there is a donor and acceptor group of electrons, I
will discuss it later then we have electronic transition in conjugated systems and most
significant transition is pie to pie star transition. So in this lecture I will focus on electronic
transition in conjugated system some of them I have already discussed few of them I will

disused after this lecture.
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So, if you go and look at the compounds there are the few transitions which happens in
alkanes and that is your sigma to sigma star transitions common transitions in carbonyl
compound is sigma to pie star and your pie to pie star happens in alkenes, carbonyl
compound, alkyne etc, n to sigma star generally takes place in compounds containing oxygen
nitrogen sulfur and halogen compounds and your n to pie star transition takes place in
carbonyl compounds. So, in carbonyl compounds there are three different kinds of transition

which can happen sigma to pie star, pie to pie star and n to pie star, whereas alkene and

alkyne have pie to pie star transition.
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And here is the different occupied level and unoccupied level, so here sigma is occupied level
pie n this are the occupied levels and pie star and sigma star are unoccupied levels, so you
can see that when electron is in the n level and it goes to pie star that is known as n to pie star
transition when electron are in pie outer most electrons are in the pie level then it goes to pie
star it can go to pie star and when it is in sigma it can have sigma to pie star it can have sigma
to your sigma. So, all these different kind of transition are possible in this lecture we will

discuss mostly the effect of conjugation particularly in alkenes kind of system.
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The effect of conjugation of alkene

» The most significant transition is m =
m*transition. The value typically lies
between 200 to 700 nm. The wavelength
of such transition can be calculated by
using the particle in a box.
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The most significant transition is pie to pie star transition in alkene and the value typically
lies between 200 to 700 Nano meter, we can actually calculate the value of lambda and the
way we do is by using the particle in a box kind of system. Using a particular in a box
system, we can write the Schrodinger equation and we can solve to get the energy of different
electronic levels and the delta E between two levels where transition is taking place will give
you the value of lambda and as I told you the value of lambda lies between 200 to 700 Nano

meter.
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A molecule in a one-dimensional box

paMcs in 3 box
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Fig. 210. The ‘particle in a box' takes a complex structure like a molecule and
approximates it by a homogeneous box. All details, such as atoms, are ignored.

The molecules like butadiene can be treated as
(u) particle confined in a one-dimensional box.
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So, basically what you do is you take your molecule conjugated system as a particle and you
confined between two walls and then you can apply particle in a box approximation, so
molecules like butadiene which is an alkene can be treated as particle confined in one
dimensional box, so if you take butadiene or you can think of hexatriene these can be treated
as particle confined in one dimensional box, and when we apply Schrodinger equation for

particle in one dimensional box and we can get the energy of butadiene kind of system.
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The effect of conjugation of alkene
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Now, what is the effect of conjugation of alkene, if you go from ethylene to butadiene to

hexatriene and if you look at the energy then the energy gap between HOMO to LUMO



decreases and so the lambda of transition between HOMO to LUMO increases since energy
gap decreases. So it goes from 175 Nano meter in ethylene to 258 Nano meter in Hexatriene.
Now we like to see how we can explain this decreased in delta E and increase in your lambda

value.
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The ‘Classical’ Case: A Free particle in a
Perfect one-dimensional box

Free =l

Particle: ‘ \ Q= _

No force 0= | [Q-0 Jlome Potential
acingonit bl /«’ v . Energy

I x—= |

Walls are infinitely thick, infinitely massive and completely
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So, for that we need to understand the concept of the particle in a box. So let first think of a
classical case of free particle in a perfect one dimensional box, so you are talking about big
system for example racket ball and now you are trying to see you are trying to look at its
behavior in one dimensional box so one dimensional box is basically a space confined by two

walls, walls are infinitely thick infinitely massive and completely impenetrable.

So, if you have this kind of system then you are basically dealing with a perfect one
dimensional box, now I told it is a free particle what I mean by free particle that no force
acting on it, so there is no force acting on it, when there is no force it means potential energy
is 0 here potential energy is 0 and since the no way particle will be in this region or this
region, so in this region let say this region 1 and this is region 3 and this is region 2, so in
region 1 and 3 potential energy is infinite because there is no way this free particle will exist

in this region.
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Ball in perfect one-dimensional Racquetball

court
Q=0
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If velocity is
zero, KE. is
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can know
the position.
It will be

Lis 12 m and mass of the ballis 0.04 kg between 0

| (ﬁ) and L

L Ax=0,Ap =0

So, now let us think of the behavior of free particle here, so suppose free particle here and (())
(14:31) so it will rebound at this wall it will go back again it will come here it will go back
and since there is no force acting on it, it will keep on doing this, it will keep on doing this

and since it is free particle so Q is equal to 0 it means energy is equal to kinetic energy.

So, energy will depend on velocity energy will depend on velocity and suppose if velocity is
0, it means kinetic energy is 0 and when it is 0 it will be somewhere on the surface
somewhere on the surface line step and so I know the position it will be in between 0 and L
and if it is here then it is at position X. So I know the position of the particle I also know
momentum since I know velocity, velocity is 0 means momentum is 0 and the position is at x
and so uncertainty in position is 0 and uncertainty in momentum is 0. So this is for ball
imperfect one dimensional racquet ball court where the length is 12 meter and mass of the

ball is 0.04 kg, so this is for ball imperfect one dimensional racquet ball court.
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The ‘Quantum’ Case

Length is | nm rather than 12m

Particle has the mass of electron 9.1 I(@kg rather
than 0.04kg.

[t must obey the Uncertainty Principle

V cannot be zero, The particle cannot be standing
still at a specific point.

[V cannot be zero, then Ek can never be zero.

(“) Our quantum racquetball can never stand still.
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Now, let us think of the quantum case. In the quantum case length is not 12 meter, length of
the box is 1 Nano meter and particle has the mass of the electron which is very small 9.1 into
10 to the power minus 31 kg rather than 0.04 kg. So it must obey the uncertainty principle it
must obey the uncertainty principle, here V cannot be 0 the particle cannot be standing at a
specific point, why V cannot be 0 V is 0 then you know it will violet uncertainty principle
because you know V and you also know the position which is simply not allowed by

uncertainty principle.

So, if V cannot be 0 which is velocity cannot be 0 then kinetic energy can also not be 0,
kinetic energy can also not be 0, so one quantum racquet ball can never stand still, and the

energy of ball can never be 0.
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Energies of a Quantum Particle in a Box

0 N —

The wavefunction has a nonzero value
at the walls and must drop
discontinuously to zero outside the box.

0

So, how to calculate the energy of a quantum particle in a box, so if we simply allow the
concept of or simply take the concept of wave function which is allowed due to quantum
postulate being may be able to get the energy of a quantum particle in a box without doing
much calculation. So what I mean by that is please look at this picture if you look at this
wave function this does not go to 0, and this wave function is not allowed because if this
function is allowed then or this wave function should go to 0 quite rapidly or you can say that
it will drop discontinuously to 0 outside the box outside the box and so this kind of wave

functions are not allowed.

If you remember when I discussed about a postulates of quantum mechanics I told you that
wave function must be continuous and here what you are seeing is that wave function is

chopping discontinuously to 0 outside the box.
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Wave lunctions must be zero at the walls

So, what kind of wave function is allowed the wave function is allowed which is O at the x is
equal to the 0 position and x is equal to L position, so now you can think of how a wave
function will look like in a box, so wave function must be 0 at the walls that is the very

important criteria.

Now, you see the first wave function you can think of which is 0 at the wall is when you
know it is start from here from O position it goes back to 0 at this position, so this is when n is
equal to 1 now second thing will be you starts here you go down to 0 you go back you go like
this and your at end of at 0 at x is equal to L, this has to be like this because your light

behaves as a way.

Now, the third thing which you can think of is first it decreases goes up becomes 0 here goes
up then it starts decreasing towards to 0 goes to minima and then again back to the phi is
equal to 0 phi is equal to 0 amplitude becomes 0, so this are allowed wave function and if you
look at the wave function then what you will be able to get is lambda of the wave should be

equal to 2L divided by n, so if n is equal to 1 then lambda is 2L.

So you see here this is L is equal to lambda by 2 in this case, so lambda is equal to 2L. In this
case L is equal to lambda or lambda is equal to 2L by 2 here you can say 2L by 1. Now, let us
look at here and this is L is equal to 3 lambda by 2, so lambda will be 2L by 3 so for n is
equal to 1 there is 1 here for n is equal to 2 there is 2 here and for n is equal to 3 there is 3

here, so lambda is equal to 2L by n.
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Nodes are the points where the wave function crosses zero

| # =0

5o VN
& ANA
‘. D v \\f,f/ ‘\\
N
|

RN

|-. 1]

(ﬁ) e

MPTEL

0

And again if you look at the wave function square verses x (())(21:53) it will look like this, so
now you have everything as positive and the amplitude tells you about probability phi square
tells you about the probability, so can know what is the probability at the particular point in

the one dimensional box and this are the position which are known as nodes, so nodes are the

points where the wave function crosses 0.
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Energies are quantized

Now, we know what is the value of lambda, lambda is a function of n which is a, which is
known as principle quantum number, now let us calculate energy. We know that E is equal to

half mV square and using this let us calculate the momentum, so p square will be a p we



know that p is equal to m square V square so what I am trying to do is, [ am trying to relate E
with p and I know the relationship between p and lambda so I can calculate the energy as a
function of n, so energy is half mV square and now I am trying to first express energy in

terms of momentum.

So, we know that p is equal to mV so p square is equal to m square V square so energy is p
square by 2 m and p is equal to h by lambda from De Broglie hypothesis, so I am replacing p
by h by lambda and I plug in value of p to this equation what we get is E is equal to h square
by 2 m lambda square and just I showed you hat lambda is equal to 2L by n so you can put it
here and what you get is E is equal to n square h square by 8 mL square and this is the way

you can know the value of energy of different electronic levels where n is equal to 1, 2, 3, 4.
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Wave functions must be zero at the walls

In can only take if you look at the previous particle in a box it can only take integer value it
can take 1, 2, 3 it can not take a fraction value because in that case the wave function will not

be 0 at x is equal to L, x is equal to L.

So, please keep that think in mind and here comes the concept of confinement concept of
confinement when a particle is confined in a one dimensional box then its energy can only

take discreet values, energy can take only discreet values
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A Discreet set of energy levels

There is a discreet set of energy levels for a given mass, m, and a
given box length, T As the quantum number n takes on values, 1,
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So, there is a discreet set of energy level for a given mass m and given box length L, in can
take values 1, 2, 3 and so energy is h square by 8 mL square, 4h square by 8 mL square, 9h
square by 8 mL square this is when n is equal to 1 this will be when n is equal to 2 this is
when n is equal to 3 as we know that the energy is given by n square 1 square by 8mL square.
So, if n is equal to 1 then you have h square by 8 mL square and n is equal to 2 you have 4h

square by 8 mL square and when n is equal to 3 and you have a 9h square by 8 mL square.
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Energy in units of hz/SmL?

E (h*/8mL?2)




So, here your energy expressed in unit of h square by 8 mL square, so n is equal to 1 it means
energy is 1 into h square by 8mL square, so n is equal to 2 then energy is 4 into h square
divided 8mL square. So now we know the energy of different levels now we can discuss why
are cherries is red and blue where is blue this kind of question we can now, we will now be

able to answer.
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Why are Cherries Red and Blueberries blue ?
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So let discuss why certain fruit colour is red and certain fruit colour is blue, so we know now
the energy of different levels E1, E2, E3 and suppose the transition takes place between El to
E2 what does that mean is am going from n is equal to 1 to n is equal to 2 and we know that
En is equal to n square h square by 8 mL square and so E2 minus E1 will be equal to 4h

square by 8 mL square minus h square by 8 mL square, so here n square is 4 and n is equal to



2 and n square is 1 when n is equal to 1. So E2 minus E1 will be equal to 3h square 4h square

minus 1h square 3h square by 8 mL square.

Now, we know the value of h which is this we know the mass of electron which is 9.1 into 10
to the power minus 31 kg and suppose the length is 0.8 Nano meter length of the molecule is
0.8 Nano meter. Now we want to calculate what will the value of delta E and corresponding
lambda, so delta E is 3h square by 8 mL square so 3 this is h square into 8 this is mass of
electron and this is your length which is 0.8 Nano meter square and this is for transition

between n is equal to 1 to n is equal to 2.

The delta will in this case will be 2.8 into 10 to the power minus 19 joule and this energy
corresponds to lambda is equal to 706 Nano meter which means that the fruit is going to have
deep red colour, fruit is going to have deep red colour, so all these fruits have conjugated
system or conjugated molecule and when the fruit has conjugated molecule we can take this
molecule and consider it to be placed in a one dimensional box in that way we will be able to
calculate energy of different electronic levels of that molecule and once we know the energy

it is easy to calculate delta E and corresponding lambda.

So, lambda for transition between n is equal to 1 to n is equal to 2 when the length is 0.8
Nano meter 0.8 Nano meter is your 706 Nano meter which corresponds to deep red colour.
Now you can think of same molecule but with smaller length for example L is equal to 0.7
Nano meter in that case your lambda will be equal to 540 Nano meter which will corresponds

to green colour and if L is equal to 0.6 Nano meter then it will have blue colour.

So, when for n is equal to L to n is equal to 2 transition the colour of a particular compound
will be governed by its length and if length is 0.8 Nano meter then it will corresponds to deep
red colour, if L is equal to 0.7 Nano meter it will corresponds to green colour and if L is equal

to 0.6 then it will corresponds to blue colour.
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Particle in a box

Step 1: Define the potential energy -

Step 2: Solve the Schrodinger equation
7

Step 3: Define the wave function )

Step 4: Determine the allowed energies

Step 5: Interprat its meaning
®

Now, let us discuss particle in a box in a detail, so first thing we need to write is Schrodinger
equation for that we need to know what is the potential energy and when we write
Schrodinger equation and solve it we will get wave function we will get the allowed energy
and once we have we have allowed energy then we can interpret the transition between

different energy levels and lambda corresponding to those transitions.
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Particle in 1-dimensional box
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So, let us think about particle in one dimensional box as we discuss this space is confined by
two infinite walls and let us tells this space to be region 2 where your potential energy is

equal to 0 there are two other regions region 1, region 2 and this we Vx is infinity here VX is



equal to infinity again since it is a free particle so potential energy will be 0 in this region and

there is no scope to be for a particle to be region 1 or region 3, so Vx is equal to infinity.

Now let us write Schrodinger equation this time independent Schrodinger equation will be
minus h cross by 2 m d 2 psi x by dx square this is your kinetic energy term this is potential
energy term and when we apply kinetic energy operator plus potential energy operator on the
wave function wave function we will get energy as I n value energy at I n value. So, now let
us go and apply the boundary conditions in region 1 and 3, this potential is infinity and so
wave function must be equal to 0, so psi square must be 0, so wave function must be 0 in this

2 regions.
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Now, let us go back and see what is the equation this equation here and this, suppose this V is
0 which is in this region and so what equation left is this is equal to E psi and this basically
get the formulaic this d 2 phi x by dx square is equal to minus 2 m E divided by h cross
square into phi x, second derivative of a function equals a negative constant times the same
function, so this is basically a constant multiplied by phi, the second derivative of a function
equals a negative constant times this the same function, if you have a this kind of differential

equation it is quite easy to guess what will be the solution.

Now let us think of this the function with this property can be represented by sin or cosine
function, so function with this property is sin and cosine function, function with this property
is sin and cosine function now let us think of if I take second differential what will happen, so
let us take second differential of sin ax we know that first differential is d by dx sin ax is

equal to a cos ax and when we take d by dx of a cos ax is equal to minus a square sin ax.

So that 1s what I have written here and now you can see that the second differential of this
function is minus a square multiplied by sin function similarly you can do for cos ax by d
square by dx of cos ax and that will be minus a square cos ax similar way you can prove it.
So what that means is solution of this differential equation is either sin function or cosine

function.
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So, let us again go back to region 2 and try to solve this so minus h cross square by 2m d2 psi

x by dx square is equal to E psi and if I take this 2 to this side what I will get is minus d2 psi

x by dx square is equal to 2 m in the numerator divided by h cross square into E psi and then



you get there is differential equation which is the second derivative is equal to if you take
minus this side second derivative is equal to minus k square psi and for that your solution can
be a sin wave function or cosine wave function and general way to denote this is psi is equal

to A sin kx plus b cos kx.

Now, what we will do is will try boundary conditions we will apply boundary conditions to
get the value of k, so if I apply boundary condition what we know that wave function is your
0 at the boundary, so we know that at x is equal to 0 wave function is 0 so if we apply that
condition so at x is equal to 0 wave function is 0 if we apply this condition what I am going
to get is b is equal to 0, since sin 0 is 0 cos 0 is 1 and so B is equal to 0 So, now we got the

value of B,

Now second condition is at x is equal to L psi is equal to 0 so at L also wave function must be
0 and if we apply that condition what we are going to get is this 0 is equal to A sin k into L
and since A is not equal to 0 which means kL is equal to n pie and your and thus the wave
function is your A sin in place of k you can put n pie by L so n pie x by L, this is your
solution of the wave function, solution of the wave function from the Schrodinger equation,
but what is A we have already calculated B we know what is the value of A, now we need to
know the value of A once we know that everything is known and you know what will be the

wave function.
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So, for that you need to do normalization and we know that in the normalization your psi star

psi dx when it’s a vindicator between to L it should be 1 because somewhere in between your



particle is present, so probability of finding the particle in the box is 1, now if you do this
what you are going to get is A square x by 2 minus sin 2 kx by 4k and 0 to L, so this is your

this part is basically integration of sin square Ax dx sin square Ax dx.

So, you do this integration and you do this integration you will get this value, now you put
this conditions when you put this conditions what you are going to get is when x is equal to L
then it will be L by 2 minus sin 2, 2kx so 2k put the value of k also you will get this value and

for 0 you are going to get 0 here and again here it will be 0.

So, using this you will be able to get value of A which is square root of 2 divided by L which
is a square root of 2 divided L and thus the normalized wave function for a particle in a box is

equal to square root of 2 by L multiplied by sin n pie x by L, sin n pie x by L.

Now, let us calculate energy levels we know that k square is equal to 2m E by h cross square
so E is equal to k square h cross square by 2m where h cross is h by 2 pie then E will be k
square h square by 2m into 4 pie square and k we know k will be n pie by L, so k square is n
square pie square by L square multiplied by h square 2m 4 pie square from here and so
energy is will be given by energy will be given by is equal to n square h square by 8mL
square and that is what we got when we applied this simple concept of wave becoming 0 at 2

walls.

But now we have energy term and as you can see it E is dependent on n value and n can take
only values integer values, so 1, 2, 3, 4 n can take values 1, 2, 3, 4 and once I know what is
the energy level now I can go and calculate what will be the value of energy of different

levels of a conjugated system conjugated system.
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(- By Pauli’s Exclusion Principle, only two electrons can occupy the same energy
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state. To have the same energy, they musthiave opposite spins.
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So, this is your conjugated system double bond followed by a single bond double bond
followed by a single bond, so first thing is that what will be the value of L what will be the
value of this L or you can say that your size of one dimensional box generally this bond is
double bond is equal to 1.4 angstrom and if you take in this direction this length is equal to
1.2 angstrom and so you can know what is the length of this box, so for example if it is four

double bond system now you see here 1.2, 1.2.

So this is your 2.4 this is 2.4 this is 2.4 and this is 1.2 so0 1, 2, 3, 4, 5, 6, 7 and so what you
can do is you can write this as your 2n minus 1 multiplied by 1.2 angstrom so if there is a
four number of double bond then you have a 2 into 4 minus 1 that is 7 multiplied by 1.2

angstrom length.

Now, each atom in the path of conjugation contribute to 1 electron to the quantum energy
level inside the box, so how many atom is here 1, 2, 3, 4, 5, 6, 7, 8 and each one of them is
contributing 1 electron, so total number of electron in the conjugated system is 8 from Pauli
Exclusion principle only two electron can occupied the same energy state to have to same
energy they must have opposite spins and a typical bond length in the path of conjugation is

1.4 angstrom.

One thing you must keep in mind is, this is larger than a bond length of carbon double bond
carbon it is not basically double bond corrector since it is in conjugation with another double

bond and so it is between a single bond and double bond.



(Refer Slide Time: 45:35)

LMD~ Ml e EN

ete —\f}l—".rl—

ne=2 qu {

GROUND STATE = 15T EXCITED STATE
OF THE MOLECULE OF THE MOLECULE

®

Now, lets us talk about your last system where there are four double bonds in conjugation, so
the number of electron in conjugation is 8 and so if I try to fill in the electronic states the
different molecular levels how we are going to do is to is in this ground state to is in this state
to is in this state and to is in this state and this is your highest occupied molecular orbital and
this will be lowest unoccupied LUMO lowest unoccupied molecular orbital and this will be
equal to p by 2 where p is total number of electron and so 8 by 2 is 4 and n is going to be 4
plus 1 5, so this is your ground state of the molecule and first exited state when 1 from

HOMO goes to 1 electron from HOMO goes to LUMO.
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And now we can calculate delta E, so delta E is equal to j square minus i square h square by
8mL square so what I am giving is when I go from n is equal to I to n is equal to j this will be

the delta E for electron and just we saw that j will be given by p by 2 plus 1 whereas I will be
given by p divided by 2.
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If you remember that in this case n is equal to p by 2 and this n will be equal to p by 2 plus 1,
so HOMO for HOMO n is equal to p by 2 for LUMO your n is equal to p by 2 plus 1, so L is
HOMO and this is your p by 2 and j is LUMO which is p by 2 plus 1, and 8m p minus 1 into

L square let me explain this here.



(Refer Slide Time: 48:06)

Estimating pigment length

Ao

\:" i
NN,
ke '
RS
i
Assumptions:

* Each atom i the path of conjugation conmibutes one electron to the quantum
energy levels mside the box.

=, * By Pauli’s Exclusion Principle, only two electrons can occupy the same energy
(‘* state. To have the same energy, they musthave opposite spins.

MPTEL = A typical bond length in the path of conjugation is 1.4A.

sm((p-1I) )
_(p+D s .
(p-1)* 8ml®
Since Egposn = AEstecion
2 W he'  (p+]) "

A

* plid

(p-1} Snif_i AL
Canceling an h on both sides gives us,
— ¢ (p+]) h

Lo (p=1)8mF

®

NPTEL

We just calculated 2n minus 1 multiplied by 1.2 angstrom where n is number of bond and 2n
will be number of electrons conjugated electrons, so p minus 1 into small 1 will be equal to L
where small 1 is 1.2 angstrom and so if I put it here it will be p minus 1 into L square and if
you simplify it what you are going to get is p plus 1 divided by p minus 1 square multiplied
by h square by 8mL square and E photon will be equal to delta E electron and so hc by
lambda of photon will be equal to p plus 1 h square divided by p minus 1 square 8mL square.
Canceling h on both side gives you C by lambda is equal to this and so you can know what is

the value of lambda.
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Now once you have this concept now you can go ahead and calculate the lambda value for
different fruits, now let me give three examples of fruits for example carrot, tomato and algae
there colour is due to different conjugated molecules for example in carrots there is beta
carotene and its structure is given here. In tomatoes you have a lycopene and its structure is
given here, and in algae there is echinenone and here is the conjugation, and you can now see
that there is high degree of conjugation in this compound and that basically results into

colour.

Electrons here electrons you can think of electrons have wave property and they do not jump
of the pigment when they reach its ends, the electrons resonance is determines which

frequency of light and thus which colour are absorbed or emitted from the pigment, so it is



not very difficult to calculate the I have already told you that if there is if there is E electron
in conjugating then this is the formula which can be used to calculate the value of lambda, an
same thing you can do it here you see here conjugation 2 to 4, 6, 8, 10, 12, 14, 16, 18, 20 and
22 these are the number of electrons in conjugation and now you know the value of p you can

calculate what will be the lambda.
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Now, can we calculate the lambda value for cyclic conjugated molecule because there are lot
of molecules in the nature which is a cyclic conjugated molecule, for example your
chlorophyll or protoporphis they have a cyclic structure and they are cyclic conjugated
system. Here again we can apply the crude quantum model, crude quantum model now you
can think of this as a ring and a ring the resonance condition is 2 pie R is equal to n lambda, if

you remember we have discussed this when we were discussing rotation, rotation.

So, the resonance condition is 2 pie R is equal to n lambda so now I know the lambda value
and since lambda is related to momentum p and so I can know what is the value of p and now

p is related to energy and so energy can be calculate.
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So, 2 pie R is equal to n lambda and we know that p is equal to h by lambda and so your p
will be nh by 2 pie R, so you can simply put h by lambda will be equal to 2 pie R and that is
all and now once we know the value of p we can calculate energy of the electron and that will
be given by p square by 2m, so p is equal to nh by 2 pie R so take the square of this and
divide by 2m you can get the energy of electron and now you can see energy is once again
quantized because n can only take value 1, 2, 3 so it depends on variable n which is which

possesses discrete value and so we have only discreet energy levels, discrete energy levels.
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Time is up so I will discuss about this electronic material thing in the next lecture thank you

very much for listening, I will directly go to acknowledgement section and I will recommend



you to read the book called absolutely small by Michael D Fayer very well written book and
certainly you can also look at Banwell book and the book written by me lot of figures has

been taken from these books or waves and I have tried to acknowledge all of them.



