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Today, we are going to discuss applications of the concepts, which we have developed so  

far.  We have derived some expressions, for example, expressions for writing the partition 

function, and expressions for fractional population of any ith state.  And in today's 

discussion, we will solve some numerical problems and then we will try to understand what 

these results represent.  So let us get started with the first numerical problem.  The first 

problem, the first question that I want to discuss with you today is that in broad sense, how 

do the concepts of statistical thermodynamics differ from chemical thermodynamics?  

Explain by taking an example.  This is just a discussion-based problem, numerical 

problems we will discuss ahead, but the question that is being asked over here is that in a 

broad sense, in a general sense, how does statistical thermodynamics differ from chemical 

thermodynamics?  Going back to our previous discussion, in chemical thermodynamics we 

deal with the average properties, we deal with the bulk properties. And in statistical 

thermodynamics, we deal with the molecular properties.  We also discussed that statistical 

thermodynamics provides a link between molecular properties and bulk thermodynamic 

properties.  Let us take an example.  Let us take an example of pressure of a gas. Pressure 

of a gas, let me represent by P. What is P?  P is force per unit area.  Consider a gas contained 

in a cylinder.  How do we define the pressure of the gas over there?  It is the force exerted 

by the molecules per unit area.  Remember that in a container, the gas molecules are 

colliding with each other. 

 So therefore, whatever the energy possessed by the molecules that is being exchanged, 

they are not just colliding with each other, but the energy is also being distributed between 

different modes of motion.  We have discussed this earlier.  Now you see how my 

discussion is changing from an average quantity which is the pressure, which is the force 

per unit area.  It is an average quantity we are talking about.  And then I am talking about 

that there are different molecules, they are colliding with each other, the energy is getting 

distributed amongst themselves, not only getting distributed amongst themselves but also 

between different modes of motion. So this is how the concepts of chemical 

thermodynamics differ from statistical thermodynamics.  In chemical thermodynamics, we 

talk about bulk properties, average properties.  Whereas in statistical thermodynamics, we 

start talking about individual molecules, we talk about the population of different energy 



levels, and then we connect with the  thermodynamic quantities.  So therefore, once again 

reemphasizing what is statistical thermodynamics is a link between  other properties  and 

bulk thermodynamic quantities or properties.  So this is how in a broad sense the concepts 

of statistical thermodynamics differ from chemical thermodynamics. 

 Now let us move to another question.  Read the question or try to understand the question 

carefully.  The question is, consider a system of 20 non-interacting molecules, which means 

I am talking about 8 molecules or independent molecules with a uniform ladder of energy 

levels, each separated by 100 centimeter inverse.  How many out of the following 

instantaneous configurations are simultaneously possible?  Justify your answer with 

suitable calculations.   

Let us try to understand the question. 

 Consider a system of 20 non-interacting molecules with a uniform ladder of energy levels 

and each separated by 100 centimeter inverse.  So what I have is, I have a uniform ladder 

of energy level  and each one is separated by 100 centimeter inverse.  Let me represent that 

100 centimeter inverse by E. So each one, for example, if this is  E0, this is E, this is 2E, 

this is 3E, this is 4E and so on and this E separation is 100 centimeter inverse.  And then 

we are asked, how many out of the following instantaneous configuration, what  are those 

instantaneous configurations?   

First one is 20, 0, 0, 0. 

 How do we read this?  20 molecules are in the ground state, that is with an energy equal 

to 0 and there is  no molecule in the upper state.  The second instantaneous configuration 

is, you have 10 molecules in the ground state,  no molecule in the first excited state, 5 

molecules in the second excited state, 2 in  the third excited state, 0, 3, etcetera, etcetera 

and we already have learnt how to read an instantaneous configuration.  And there are other 

instantaneous configurations given over here, like (2, 10, 3, 5, 0, 0) or 5, 5, 5, 5, etcetera, 

then (6, 10, 3, 5, 0, 0, 0, 0), etcetera.   
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The question is, how many out of the following instantaneous configurations are 

simultaneously possible?  There can be several instantaneous configurations.  But then, if 

you remember, we discussed that all the instantaneous configurations may not be 

permissible because certain constraints are there, certain laws, certain rules have to be 

followed. 

What are those constraints?  The first constraint is that the total number of molecules have 

to remain constant, that is, summation ini is equal to n.  The molecules which are present 

in different energy state, the sum has to be equal to 20  because there are total 20 non-

interacting molecules.  And the second constraint is that the total energy of the molecules 

in each state has  to be equal to the sum of that has to be equal to the total energy of the 

system.  So, these two constraints have to be followed.  One is summation n i is equal to 

capital N, that is, the total number of molecules and  summation niEi is equal to the total 

energy.   

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:   ∑𝑛𝑖 = 𝑁;   ∑𝑛𝑖𝜀𝑖
𝑖
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So, therefore, let us now start working out for each system.  Let us take the first 

instantaneous configuration.  The first one is (20, 0, 0, 0,) etcetera.  First of all, let us see 

that in each instantaneous configuration is this constraint follows,  that is, the total number 

has to be 20.  In this instantaneous configuration, it is 20 plus 0, 0, 0, 0, total is 20, fine. 

 In the second one, 10 plus 5 is 15, plus 2 is 17, plus 3 is 20, that is also fine.  Then 2 plus 

10, 12, 12 plus 3 is 15, plus 5 is 20, that is also possible.  5 times 4 is 20, fine.  Here 6 plus 

10 is 16, plus 3 is 19, plus 5 is 24, that does not fit in, because that  is not saying that 

summation n i is equal to N. So, therefore, this configuration is  straight away ruled out. 

Now, we have to worry about the four instantaneous configurations.  This constraint is 



followed by these four instantaneous configurations, first constraint.  Now, we have to 

check about the second constraint.  Let us start working about this.  So, how much is the 

energy?  Here, it will be, let us start writing down, the energy in this case is going to be 20  

times 0, plus 0, plus etcetera, etcetera, right? 

20 into, because they are all in the ground state, 20 times 0, 0 times whatever is the energy, 

etcetera, then the total value is equal to 0.  Now, let us take the second one.  Second one is 

10, 0, 5, 2, 0, 3, this one, is 10, 0, 5, 2, 0, 3.  Let us write the energy for this.  This is equal 

to 10 times 0, plus 0 times E, plus 5 times 2E, then plus 2 times 3 times 0E, 2E, 3E, plus 0 

times 4E, plus 3 times 5E, right. 0E, 2E, 3E, 4E, 5E.  Let us see how much it comes to.  

This is coming to 10, plus 6 is 16, plus 15 is equal to 31 times E, where E is 100 centimeter  

inverse.  Now, let us look at the third one.  The third one is 2, 10, 3, 5, 0, 0, etcetera.  Let 

us write the total energy for this. This is equal to 2 times 0, plus 10 times E, plus 3 times 

2E, plus 5 times 3E, plus remaining all are 0, because 0, 0, 0.  So, how much this comes 

to?  10, plus 16, plus 15 is equal to 31E.  Now, let us look at the last one.  We can utilize 

this space. Here we have 5, 5, 5, 5.  So, energy is equal to 5 times 0, plus 5 times E, plus 5 

times 2E, plus 5 times 3E, and the remaining are 0.  So, how much this comes to?  5, plus 

10, 15, plus 15, 30.  Now, the answer is very clear.  There are only two instantaneous 

configurations where the total energy is remaining the same.  In other instantaneous 

configurations, for example, here it is 0 and here it is 30 times E. 

E is 100-centimeter inverse.  So, therefore, which instantaneous configurations are 

simultaneously possible?  One is this, because this instantaneous configuration has a total 

energy of 31E, and the second instantaneous configuration which is simultaneously 

possible is this one.  This also has a total energy of 31E.   
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That is 3100 centimeters inverse.  And we already discussed that all these four 

instantaneous configurations 1, 2, 3, 4, their total number summation, they are following 

this summation ni is equal to n, 20.  But the total energy constraint is only followed by this 

configuration and this configuration. 

So, only two out of the given instantaneous configurations can exist simultaneously.  So, 

remember that whenever you need to find out which different instantaneous configurations  

are simultaneously possible, then you need to follow these two constraints.  But you 

remember our previous discussion.  There are several instantaneous configurations are 

possible, but the system is most likely going to be found in an instantaneous configuration 

which has maximum weight.  In this problem, we have only talked about which are the 

different instantaneous configuration. 

Now you can always talk about the weight and then try to find out the system is most likely 

going to show the property of that instantaneous configuration which has maximum weight.  

Let us now switch over to another type of problem.  Let us read this problem carefully.  For 

a three level system in which different non-degenerate energy states are equally spaced by 

E, which out of the following expressions is correct for a fractional population of second 

excited state, show your derivation.  So, we have to consider a three-level system in which 

different non-degenerate energy states are equally spaced. So, therefore, let us first draw.  

We draw a three-level system 1, 2, and 3.  These are equally spaced.  That means this is 0, 

this is E, this is 2E and we need to find out the expression for  fractional population of the 

second excited state.  So, let us recall what was the expression for writing fractional 

population.  The expression for writing fractional population of ith state was ni upon n is 

equal to exponential minus beta Ei upon q. 

We will use this expression.  The question that is asked is corresponding to a second excited 

state.  So, this means the second excited state we are talking about is this one.  Here for 



this Ei is equal to 2E and the q partition function is equal to ground state contribution is 1, 

second exponential minus beta E plus exponential minus 2 beta E.  I have expanded q is 

equal to summation j exponential minus beta Ej.  There is no question of degeneracy over 

here. 

Therefore, g factor I have not included.  Therefore, ni upon n which is Pi is equal to 

exponential minus beta EI.  EI is equal to 2E, 2 beta E and q is 1 plus exponential minus 

beta E plus exponential minus 2 beta E.  Let us take the logarithm on both sides.  So, the 

logarithm of Pi is equal to log A by B is minus 2 beta E minus log this is 1 plus exponential 

minus beta E plus exponential minus 2 beta E.  
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Beta is equal to 1 over KT.  This is equal to minus 2E upon KT minus log 1 plus exponential 

minus beta E plus exponential minus 2 beta E. Let me write here E. So, therefore, what we 

have got is the logarithm of the fractional population is minus 2E upon KT minus log of 1 

plus exponential minus beta E plus exponential minus 2 beta E.  So, therefore, the first one 

is the correct expression.  The way to solve this kind of problem is first of all we need to 

understand that how different energy levels or different energy states are arranged 

organized. It is possible that some of the states may have the same energy and if different 

states have the same energy those states will form a level.  Therefore, a particular energy 

level may be g fold degenerate.  We have been expressing degeneracy in terms of g and 

suppose if there are more than states more than one state which have the same energy then 

the fractional population of that level is going to be g fold.  Suppose, if I consider this 

expression and if ith state is two-fold degenerate that means the population of that energy 

level is going to be twice of that of a one state then in that case that g factor needs to appear 

here and kind of you know will modify this kind  of expression, but that we are going to 

discuss in the next set of numerical problems.  So, the take-home lesson from the discussion 

on these questions is that we should be able to write expression for the partition function. 



Expression for partition function if there are discrete energy levels which are given to us 

like uniform ladder of energy level or some sequence of energy levels we should be able 

to write expression for partition function and then we should be able to write expression 

for fractional population.  Once we are able to write these kind of expression you will see 

in the lectures which we are going to now discuss ahead it will be easier to connect the 

partition function with different thermodynamic quantities.   

Thank you very much.   


