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Welcome back to the next lecture on Statistical Thermodynamics.  In the previous 

lectures, we have derived expression for molecular partition function and we have tried to 

understand what is the meaning of partition function, what is the  interpretation of partition 

function.  Then we tried to understand further the meaning of partition function by 

considering a two level system and then we derived an expression for partition function for 

a uniform ladder  of energy levels.  We also derived expressions for the fractional 

population and from the discussion on temperature dependence of fractional population, 

we arrived at a very important conclusion that as the temperature approaches infinity, all 

the states are going to be equally likely populated.  With that background, now let us 

proceed further.  Today we are going to discuss the partition function for a particle or a 

molecule which  is free to move in one dimension, two dimension, three dimensions. 

That means today we will derive expressions for the translational partition function.  How 

we will develop is that first we will consider a particle or a molecule which is free to move 

only in one dimension, x dimension let us say.  And once we have derived some 

expressions, then we will extend this to a particle or a molecule which is free to move in 

two dimensions or three dimensions.  So today in the discussion, I will refer back to particle 

in one dimensional box. 

You remember when you studied quantum chemistry, particle in 1D box, 2D box, 3D box, 

there you derived expressions for the energy levels for a particle in 1D box, 2D box, 3D 

box.  We are going to use that result over here also.  Let us begin our discussion.  So, let 

us consider the energy levels of a molecule of mass m in a container of length x.  That 

means you are allowing the molecule or the particle to move only in one dimension. 

You are not allowing it to move in y direction or z dimension, only one dimension length 

x.  And as I said, we are going to use the expression for energy levels which you derived 

for particle in one dimensional in a box which essentially was a length.  And this is the 

expression you got, E n is equal to n square h square over 8 m x square.  x is the length of 

that box.  n is the quantum number. 



 

Remember that the values, permitted values of n were 1, 2, 3 onwards.  Remember n is 

equal to 0 was not permitted.   

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝑋2
       n = 1, 2, 3, …….. 

For n=1 (Lowest level); 𝐸1 =
ℎ2

8𝑚𝑋2
 =  

𝜀𝑛 = (𝑛2 − 1)𝜀 

So, once again n is the quantum number, h is plant constant, m is mass of the molecule or 

particle and x is the length.  Now, I refer back to our original discussion where we talked 

about the ground state. We set the value of energy of ground state equal to 0.  So, how do 

we bring that modification over here?  Here the lowest state is corresponding to n equal 

to 1.  So, what is n equal to 1?  n equal to 1, the lowest level E 1, you substitute here n 

equal to 1.  So, you have h square over 8 m x square.  And let me write this equal to E. 



 

This is the energy of the lowest level.  So, therefore, in order to set the value of energy 

corresponding to n equal to 1 to 0, what I will do?  I will write E n is equal to n square h 

square over 8 m x square minus I will subtract this value, the lowest value which is h square 

over 8 m x square.  What I have done?  Pay attention that we took the expression n square 

h square over 8 m x square and from this we subtracted an expression which is the energy 

level for n equal to 1.  So, this way we are setting the lowest level energy equal to 0.  So, 

what we have now here is equal to n square minus 1 into h square over 8 m x square. And 

this h square over 8 m x square we have set equal to E. That means now I can write  E n is 

equal to n square minus 1 into E. And now let's say if I set n equal to 1, 2, etcetera,  etcetera, 

etcetera, for n equal to 1, if you substitute n equal to 1, then the lowest energy  is going to 

be equal to 0.  So, note this step that how we have set the ground level, the lowest level 

energy equal to 0.  We have just subtracted a constant and we will account for this 

subtraction, we will account for this constant later on. 

So, what we have done?  



 
We have set the energy level En is equal to n square minus 1 into E. And now we need  to 

write the expression for partition function.  And what is the expression for partition 

function?  You remember is equal to summation j exponential minus beta  Ej and wherever 

degeneracy needs  to be accounted, we need to account for.  So qx, the subscript x identifies 

the movement only in one dimension in a length x equal to x.  n value we will now write 

summation, summation n value can assume from 1 to infinity exponential minus beta E, 

beta is there and instead of E, I am writing n square minus 1 into E. 

This step should be noted carefully. We have basically used this formula and we have 

substituted for n, n can vary from 1 to infinity and exponential minus beta E, Ej or En here 

instead of j I am writing En.  So, therefore, you have writing n square minus 1 into E. This 

expression is exact.  In order to evaluate this expression, you have to keep on adding, 

adding, adding for different values of n. 

 Even though this expression is exact, the sum cannot be evaluated explicitly other than 

numerically for specific value of beta E.  See n can vary from 1 to infinity.  So therefore, 

when you expand this summation, you will have to keep on changing n equal  to 1, n equal 

to 2, n equal to 3, etcetera, etcetera, etcetera, go up to infinity.  So there should be an easier 

way of evaluating this expression.  So what approximation we are going to use now?  

Translational energy levels are very close together in a container of the size of a typical 

laboratory vessel. 

The energy spacing between translational energy levels is very small.  You have studied 

this in quantum chemistry.  So when the spacing is very small, when they are very, very 

close to each other, therefore, you can then approximate this summation by integration 

whenever there is a very, very  small increment or very, very small spacing.  So we are 



going to use this approximation, that is, instead of summation, let us write  integration.  n 

equal to 1 to n equal to infinity exponential minus n square minus 1 beta E dn

 

 

I am just from here I am switching over to here.  . 
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But now if you look at this expression, this integration is not that easy to solve.  So we are 

going to do minor modification over here, that is, instead of starting from 1, you start 

integration from 0 and ignore 1 over here.  Okay, note the step. You start integration from 

0 and ignore 1 over here, then you have 0 to infinity exponential minus n square beta E dn. 

 I am not saying that you randomly do that, but if you do this kind of modification, the error 

introduced is negligible.  So this form, perhaps you can recognize that you can easily 

evaluate this integral.  Let us work on that.  We need to evaluate this integral.  How do we 

evaluate?  Very easy. 

 Let us substitute x square is equal to n square beta E. So what we have?  2x dx is equal to 

2n dn and of course you have that beta E over here.  So what is dn?  dn here is equal to x 

upon n into 1 over beta E. What is x upon n?  x upon n can be found out from this. 

Let us use that.  x upon n is equal to root beta E into 1 over beta E and you have dx.  So 

what do we have?  Here is 1 over root beta E dx.  Now let us act upon this.  So qx is equal 

to, I have to write for dn.  So I have integration 0 to infinity exponential minus x square 

and instead of dn, I am going to write 1 upon beta E dx. 



Let me write just appropriately 1 upon beta E integration 0 to infinity exponential minus x 

square dx.  Now I am sure that you remember the value of this standard integral.  0 to 

infinity exponential minus x square dx.   

This standard integral, the value is root pi by 2. 

 Let us use that.  So what we have now?  qx is equal to 1 over beta E into root pi by 2.  Can 

I write this as?  Let me bring everything under root.  Here is pi by 4 beta E. Now what is 

this equal to?  root pi by 4 beta and E was h square over 8 m x square. 

This was E. What we have here is 2 pi m over beta h square  raised to the power half and 

let me take out x.  It is a very simple derivation.  What we did was that we converted this 

form of integration which was relatively more difficult  to evaluate into a simple one by 

ignoring 1 over here, setting 1 equal to 0 over here  and then substituting this equal to x 

square then working out what we have here is qx is  equal to 2 pi m square root beta h 

square.  So what we have is qx is equal to 2 pi m over beta h square into x.  What is this?  

x over here is the length of the container. 

Beta is equal to 1 upon kT.  m is mass of the particle, mass of the molecule, h is Planck's 

constant.  So this I will write as partition function for a particle or for a molecule free to 

move  in let's say x dimension, x direction, x dimension whatever you want to say.  And 

what is this?  x is the length of the container.  Let me compare or give some comments 

about partition function and wave function.  You see here we used some result from 

quantum chemistry, quantum mechanics. 

There you talked about wave function.  Wave function had all the information about the 

particle about the molecule whereas, here  the partition function we will interpret as 

partition function has all the thermodynamic  information of the molecule.  This is how 



you can complement each other.  Let's move ahead.  So what we have done is we have 

derived an expression for the translational partition  function of a particle that is free to 

move in one dimensional container of length x and  that we are referring to as qx. 

This is the expression qx is equal to 2 pi m over h square beta or beta h square the  way 

you want to read it square root into x.  Before you start applying this result, this derivation, 

it is very important to understand  in what units you need to substitute the value.  We are 

talking about partition function of a molecule.  We are talking about partition function of 

a particle.  When we say molar mass, what do we understand when we say molar mass?  

The units of molar mass is gram per mole.  

 

For example, if we say oxygen, we say 16 grams per mole.  How many molecules per 

mole?  How many molecules or let's say oxygen atom if I say 1 mole of oxygen atom, how 

many atoms are there?  Avogadro constant.  And since here we are talking about per 

molecule per particle, so therefore, when you use a number for m, this is going to be mass 

of one molecule atom particle whatever you are applying to.  Remember this, it is the mass 

of one particle.  Do not substitute it equal to the molecular weight. 

You need to convert the mass of one particle.  h is Planck constant and beta is 1 over kT 

where k is Boltzmann constant.  So once again when you apply these results to solve 

numerical problems, you need to be very very careful about the units.  If you are using SI 

units, stick to SI units and remember that one common mistake many times the students do 

is put m equal to molecular weight, but if you put m equal to molecular weight, you need 

to account for the Avogadro constant somewhere because m is mass of one particle.  

Similarly, the length, if it is one dimensional, you are talking about a length. 



The units have to be appropriate.  Let's say if you are sticking to SI units, stick to SI units.  

When we switch over from one-dimensional container to two-dimensional container, that 

is x, one length is x, other length is y, it can be even a square and then if it is a square,  then 

we can allow the particle to move on the surface of a square.  We can evaluate an expression 

or we can derive an expression for the partition function for a particle or a molecule which 

is free to move on the surface of a square.  So what we have done in this lecture is that we 

have moved towards deriving expression for translational partition function.  We are only 

allowing the molecule or particle to move in different dimensions. 

To begin with, we stuck to one dimensional container which has a length x.  We used the 

results of quantum chemistry for energy levels of particle or molecule which is free to move 

in one dimensional and then we expressed it in the form of partition function and then we 

solved it to get a result which is listed over here that Qx is equal to 2  pi m over h square 

beta square root into the length.  We will switch over from one dimensional container to 

two and three dimensional container in the next lecture.   

Thank you very much.   


