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                                                       Bose-Einstein Statistics 

Welcome back, by now we have discussed details of Maxwell Boltzmann statistics and 

based upon that we have derived various equations connecting to various thermodynamic 

quantities. Today we are going to discuss Bose Einstein statistics and we will also discuss 

that what was the need of developing Bose Einstein statistics, what could not be addressed 

in Maxwell Boltzmann statistics. We will not go through Maxwell Boltzmann statistics 

again here because we have done that thoroughly, but let us develop some background for 

discussing Bose Einstein statistics. Earlier I was using the words molecules, particles, 

etcetera and here in Bose Einstein statistics I will use phase points that particle, molecule, 

electron, whatever you consider it represents the phase points and the various energy levels 

we will talk in terms of cell. For example, consider here let us say we talk about two sets 

of cells, cell i and cell j and let there be some different compartments in the cell i and in 

the cell j. Let Ni represent the number of phase points in the cell meaning of phase points 

is I will just write in terms of dot, it can be atom, it can be molecule. 

Now why I want to represent as dot because the molecules atoms cannot be distinguished 

from each other let us say in the gas phase. So, I will represent just as the dot and let us say 

in any ith cell that there be Ni number of phase points, then the observable properties of the 

system are determined by the microstate of the system and when we talk about the 

microstate of the system or observable properties then we think of what is the 

thermodynamic probability of macrostate. How do you define the thermodynamic 

probability of a macrostate? It is the number of microstates corresponding to it that is what 

is the comment here. The thermodynamic probability W of a macrostate is also defined as 

number of microstates corresponding to it and when we were talking about Maxwell 



Boltzmann statistics then the number of microstates were defined as the number of 

permutations of a given microstate. 
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Let us try to discuss in terms of some example. Let us consider these cells cell i and cell j 

and let us say we have four phase points A B C D although I am saying A B C D we can 

distinguish letters A B and C and D, but let us assume that these are atoms molecules phase 

points which cannot be distinguished from each other. Let us consider out of these four 

phase points three are kept in cell i and one is kept in cell j right. So, we have like you 

know it is like two energy levels, and in one we have three molecules in the other we have 

one molecule. So, what is the total number of permutations and combinations? The 

thermodynamic probability you remember that W was defined as n factorial over n 0 

factorial n 1 factorial etcetera etcetera. 

So, here I will write W is equal to n factorial total 4 4 factorials in cell i in first one we 

have 3. So, 3 factorial in the other we have 1 factorial and this is equal to 4 into 3 factorial 

over 3 factorial into 1 factorial. So, that means, I have W is equal to 4 in this kind of 

arrangement the thermodynamic probability of the macro state according to Boltzmann 

Maxwell Boltzmann statistics it gives W equal to 4 this we have discussed earlier. Now, as 

I earlier said that let us replace a b c d by just dot why by dot because we cannot distinguish 



between the particles, we cannot distinguish between the phase points. So, let us represent 

molecules by dots as they cannot be distinguished with just c dots you see cell i put 3 dots, 

and cell j you just put 1 dot. 
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Now, if the subdivision of cells into compartments were not there then the only way of 

setting up the micro state with 4 phase points is 3 in i 1 in j when I say the subdivisions of 

the cells into smaller compartments. That means, within cell i can create further 

compartments if that is not there then the only way, we can arrange we can have this is 3 

in cell i and 1 in cell j. Now, the question is when you are dealing with molecule atoms or 

when you are dealing with electrons there can be some additional restrictions. For example, 

there are systems like electrons where poly exclusion principle applies. That means, in that 

case you cannot have more than 2 electrons together, but in order to avoid that complication 

which we will worry later on when we discuss Fermi direct statistics. 

 

Here let us only consider the particles to which the poly exclusion principle does not apply 

does not apply. So, that means, that gives me the freedom to put as many particles in any 

cell as possible as many phase points in any cell as possible. That is why here you are 



talking about 3 can be put in I 1 can be in J right. So, that is what the comment thus there 

can be any number of phase points in a compartment and this is Bose Einstein statistics. 

Let us discuss little details of this Bose Einstein statistics. 

So, we started with this 3 phase points in cell i and 1 phase point in cell j. Now, consider 4 

compartments in each cell that is you see here 1 compartment, 2 compartment, 3 

compartment, 4 compartment. Consider 4 compartments per cell and now if you carefully 

examine all these 3 are in one cell 2 in one cell, 1 in another cell and then there are various 

combinations. There are 20 different ways of arranging these 3 phase points in cell i E and 

since we had only one phase point is in J and if there are 4 compartments then it can stay 

here, it can stay here, it can stay here, it can stay here. That means, in this case the 

thermodynamic probability W is equal to 4. 
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In the upper case 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 W is equal 

to 20. I hope you understood that we consider compartmentalization of cell i, we created 4 

compartments and also in cell j and then if you consider the various permutations and 

combinations. There are 20 different ways of arranging 3 phase points in cell i and 4 

different ways of arranging 1 phase point in cell j. Remember that this was not possible in 

Maxwell Boltzmann statistics, where the microstates were considered different only when 



a given particle was shifted from one to another. In this case we have Wi equal to 20, Wj 

equal to 4 therefore, the total thermodynamic probability of the macrostate is going to be 

product of 2 that is overall W is Wi times Wj, Wi is 20, Wj is 4 so, total it is 80. 

If you compare this with the Maxwell Boltzmann statistics, then in that case we got W 

equal to 4. Here we are getting W equal to 80, see the difference. So, in general when there 

are any number of cells, then overall W that is the thermodynamic probability is the product 

of thermodynamic probability of each microstate. So, I hope this is clear. Let us get into 

little more details. 

Suppose we label the compartments now, consider these compartments. We label these 

compartments as 1, 2, 3, 4 and we can go up to G and the phase points, phase points are 

being represented by A, B, C, D, E, F. According to this compartmentalization in which 

the compartment in the ith cell are numbered as 1, 2, 3, 4 etcetera up to G. Let us say the 

first compartment has A, B molecule, second has 1 molecule, third is empty, fourth has 3 

molecules or 3 phase points etcetera. So, what we have here is we have number and we 

have letters right. 
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We have number, we have letters and if the numbers and letters are arranged in all possible 

sequences, then each sequence will represent a microstate provided the sequence begins 

with a number. I repeat if these numbers and letters are arranged in all possible sequences, 

then each sequence will represent a microstate provided the sequence begins with the 

number and we had these compartments up to G. That means, there are G ways of arranging 

the sequences. What I mean is there are G ways in which sequences can begin because 

there are G compartments, one for each of the G compartments. So, there are G 

compartments, there are Ni number of phase points, the total is G plus Ni and if one starts 

with one number that means, remaining G plus Ni minus 1 numbers and letters can be 

arranged in any order. 

 

Try to understand there are G ways in which the sequences can begin because their total 

number is G here. Then if you count G plus total number of phase points, if you are starting 

with one compartment that is fixed the remaining G plus Ni minus 1 numbers and letters 

can be arranged in any order. Therefore, how to calculate the total number of sequences 

that can begin with the number is G into G plus Ni minus 1 factorial. Although this each 

sequence in a this represents a microstate, many of these such kind of sequences will be 

same microstate. For example, if you compare this with this, here you see third is empty, 

third is empty but it is starting with number 3. 

1 a b, 1 a b, 4 d E f, 4 d E f, 3 d E f, 4 d E f, 4 d E f, 5 d E f, 6 d E f, 7 d E f, 2 c, 2 c. Thus, 

the number of different sequences of the blocks is obviously, G factorial. There are G 

substances which can be arranged in G factorial ways alright. Now, we have taken care of 

sequences, but remember that all the phase points that we are talking about they are also 

not distinguishable, they are indistinguishable. Therefore, we need so that in order to not 

over count the number of states, we need to divide by Ni factorial. 
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So, therefore, Wi is equal to g into g plus Ni minus 1 factorial, we divide by g factorial, we 

divide by Ni factorial. And then your G factorial is equal to g into gminus 1 factorial. So, 

this gets transformed into this, you are getting rid of this G. Now, let us apply, we will 

apply to cell i, let us say Wi, this is equal to g plus Ni minus 1. So, g here is 4, so I will 

write 4. 

So, what I will do is, I will write g is equal to 4 plus Ni, Ni is equal to 3 over here minus 1. 

So, g here is 4, so I will write 4 minus 1 factorial over g minus 1, g is 4, 4 minus 1 is 3, 3 

factorials into Ni, Ni is equal to what? Ni is equal to here is 3. So, what I have here is 4 plus 

3, 7 minus 1, 6, 6 factorial, 6 factorial over 3 factorial into 3 factorial. So, which is equal 

to 6 into 5 into 4 into 3 factorial over 3 factorial into 3 factorial. So, 3 factorial is equal to 

3 factorial with, cancels with 6, this cancels with 3 factorial that means, Wi is equal to 20, 

this is what we counted here. 

 Now, let us say, let us say Wj, Wj here g is 4 plus Ni is 1 minus 1 factorial, g is 4 plus Ni 

is 1 minus 1 factorial, g is 4 divided by g minus 1, 3 factorial into 1 factorial and this is 

nothing but this is 4 into 3 factorial over 3 factorial, which is equal to 4, 1, 2, 3, 4. So, 

therefore, this derived formula is correct. So, now, we have an expression, which can be 

used to determine the number of microstate for any ith or jth cell. Now, you will see the next 

treatment is similar to that we discussed in Maxwell Boltzmann statistics. So, what we have 



now? For each one of the microstate cell i, we may have any one of the microstate of cell 

j, there is no restrictions, why? So, therefore, how do we calculate the total number of 

microstates including all cells, cells i, cell j, then the thermodynamic probability is you 

take multiplication of all these. 

If you take the multiplication of all these, then you have multiplication of the ratio of these 

factorials. Now, let us go back to our discussion in Maxwell Boltzmann statistics. What we 

talked there was that sometimes it is easier to work with the logarithm of W rather than just 

will W. So, therefore, when you take the logarithm of W, I take log of W, then this is you 

know log, when you take log of a product, it can be written as summation, I am not going 

to get into details because this we have already discussed in Maxwell Boltzmann statistics. 

So, it will be a summation log g plus Ni minus 1 factorial minus log g minus 1 factorial 

minus log Ni factorial because g minus 1 and Ni factorial appear in the denominator. 
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We can ignore 1 because generally, the number of compartments in the cell is larger than 

1, much larger than 1. The number of phase points is also much larger than 1. Therefore, I 

can drop 1 here, I can drop 1 here. You drop there and then you apply the Stirling 

approximation. What was Stirling's approximation? We remember that log log x factorial 



is equal to x log x minus x. 

So, you apply here to all these. Once you apply to all these, then rearrange, then by using 

Stirling approximation, you have log W is equal to summation Ni plus g log Ni plus g minus 

g log g minus Ni log Ni going by the same method because we have to now find the state 

of maximum thermodynamic probability. And what is that maximum thermodynamic 

probability? Since we have decided to work on log W that means, a derivative of this log 

W, we should set it equal to 0 and then find out the corresponding expression. So, d log W 

is equal to summation log g plus 𝑁𝑖
° by 𝑁𝑖

° into d n i. When you take the derivative of this, 

you will get this kind of expression. What is this 𝑁𝑖
° now here? This is the number of phase 

points in the ith cell in thermodynamic equilibrium. 

Let the equilibrium be there. Now, the question is can we again treat this and this 

independent? Same way as we discussed in Maxwell Boltzmann distribution. This cannot 

be treated independent. Therefore, you can treat this independently by using method of 

undetermined multipliers. What is that method of the undetermined multiplier? For that, 

you need to have constraints. One constraint is the total number of phase points has to be 

same that means, all changes in the number of phase points d n i's should add up to 0. 

Second summation Ei dNi should be 0. These are the same thing which we discussed in 

Maxwell Boltzmann distribution. There we multiplied by α and minus β. Here we will 

multiply by log β and β. Of course, if you go back, we are adding here and you are adding 

minus log β minus β E i and now you treat this as 0. Once you treat this as 0, you rearrange 

you get log g plus 𝑁𝑖
° by 𝑁𝑖

° is equal to log v plus βEi and 𝑁𝑖
° upon g is 1 over b into 

exponential b E i minus 1. This is Bose-Einstein distribution function. Remember Bose 

Einstein distribution function you have 𝑁𝑖
° by g, g is the number of compartments, and b 

exponential β Ei minus 1. Sometimes this 1 can also be conditionally neglected. Now, if 

you want to further get into this theory of the Bose-Einstein distribution function, you can 

find out the expression for b. 

You can also find out the expression for β which will turn out to be 1 over k T. So, the 

distribution function that we just derived this is similar to Maxwell Boltzmann distribution 

function except that on the left-hand side we have number of phase points per compartment 

and on the right side we have this factor which includes b, β and energy levels. This has 



the resemblance with Maxwell Boltzmann function, but you see in the Bose Einstein 

distribution function you have additional consideration for the phase points per 

compartment. That means, you now start considering the number of compartments in a 

given cell. So, when you compare with Maxwell Boltzmann distribution, Bose Einstein 

distribution offer some different features and Maxwell Boltzmann distribution offer some 

features which were not considered could in the Bose Einstein distribution function. 

So, as I said that in this discussion in this treatment, we have not applied poly exclusion 

principle. If this theory is applied to electrons, then poly exclusion principle has to be 

adhered to. How that is done that we will discuss in the next lecture. Thank you very much. 


