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                                                          Equations of state 

Welcome back. We have discussed ideal systems at length during our discussion on 

statistical thermodynamics. Most of the expressions which we have derived belong to ideal 

system, ideal gases. But we know that even if we first talk about the gases, all the gases are 

not perfect gases or ideal gases. We may say that the ideality or perfection is approached 

under certain conditions. For example, when we talk about the gases, when the pressure is 

very very very low, the gases may start behaving ideally. 

And when the system is not ideal, then there have to be some different sets of treatment for 

that. So, in today's lecture, we will talk about equations of state and in today's lecture, we 

will restrict our discussion to gases. We have been discussing many equations, many 

relations in terms of canonical partition function. And the canonical partition function 

which we designated as capital Q is a function of n number of particles volume and 

temperature. 

 So, this canonical partition function which is a function of volume, temperature, n number 

of molecules was connected to various thermodynamic parameters and one such 

connection was between pressure and canonical partition function. If you remember, we 

have derived this equation pressure is equal to k T times δ log Q by δ V at constant 

temperature. We can call this is an equation of state because what is an equation of state? 

When we talk about ideal gases or perfect gases, the ideal gas law, ideal gas equation or 

perfect gas law that is P V is equal to n R T, this is an equation of state for a perfect gas. 

So, we can call an equation of state as an equation which connects P V and T. The simplest 

case is P V is equal to n R T, but remember that this is only for an ideal gas. 
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Now, you come back to this expression p is equal to k T δ log Q by δ V at constant 

temperature. This is a purely general equation, we did not specify this that whether it can 

be used only for ideal gases or it can be used only for non-ideal system, we did not specify 

that. But let us first apply it to monatomic perfect gas, monatomic perfect gas. Let us do 

that and see what happens. What we have p is equal to k T δ log Q δ V at constant 

temperature. 

Remember that if we are talking about monatomic system, we are only discussing perfect 

monatomic gas. Q canonical partition function in terms of molecular partition function is 

going to be Q raise to the power n over n factorial, because the molecules are not 

distinguishable. Therefore, we are going to use the connection of canonical partition 

function with molecular partition function which is used for indistinguishable molecules. 

Q raise to the power n by n factorial, then log Q is equal to log Q raise to the power n minus 

log n factorial. Can I write this as n log Q minus n log n minus n sterling approximation? 

That means my log Q is n log Q minus n log n plus n and let me write this on the next page. 
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Log Q is equal to we have n log Q n log Q minus n log n plus n. This is what we derived 

that is log Q is equal to n log Q minus n log n plus n, but we are interested in pressure. 

Pressure is equal to k T δ log Q δ V at constant temperature and since we have already an 

expression for log Q, we can take derivative of log Q with respect to volume. So, when you 

take the derivative of this with respect to volume, this is the only term which may depend 

on volume n log n and this n these are constant. So, derivative of this these two quantities 

with respect to volume is going to be 0 ok. 

That means the pressure is equal to k T, then we need to take derivative of this which is n 

by Q into δ Q δ V at constant temperature. Since we are talking about only monatomic 

perfect gas, so Q is equal to Q T is equal to V upon λ Q, where λ is equal to h over 2 π m 

k T ok. So, Q T is equal to then 2 π m k T raise to the power 3 by 2 into volume by h cube 

V upon λ3. So, let us now put pressure is equal to k T n upon Q upon Q. I am going to write 

Q T which is 2 π m k T raise to the power 3 by 2 into V and here I have h cube. 

This is n by Q then multiplied by δ Q by δ V at constant temperature. I need to take the 

derivative of this with respect to volume at constant temperature. Constant temperature 

means entire this factor becomes constant. So, let us write down. This becomes 2 π m k T 

over h cube, then δ V by δ V is 1. 

 



Of course, this is raised to the power 3 by 2. This and this cancel, h cube and h cube cancel 

and then if I rearrange, I get P V is equal to n k T is n times n a that is number of molecule 

is number of moles times Avogadro constant into k into T k times n a is R is P V is equal 

to n R T. This gives me P V is equal to n R T because k times n a is equal to R. Now, I can 

consume n, I can take n on the other side and V by n I can write molar volume. So, I have 

PVm is equal to R T. 

This is the equation of state. We were saying that this is equation of state and by using that 

first restricting to ideal gases, we have shown P V is equal to R T or P V is equal to n R T. 

This is an equation which you have been using for a long time and we called it as equation 

of state, but this is applicable to ideal system, ideal gases. The gases may or may not be 

ideal. First of all, we should remember what is the definition of an ideal gas. 

How do you differentiate between real gases or an ideal gas, right? Sometimes real gas you 

call as non-ideal gas. What is the difference between them? When I say ideal gas that 

means, no intermolecular interactions between them irrespective of the distance. When I 

say non-ideal gas or deviation from ideality that means, the attractive or repulsive 

interactions come into play when you vary your distance from very far to very close and if 

you remember at some point, we define 𝜋𝑇 is equal to δ u δ v at constant temperature. This 

is equal to 0 for ideal gases and this is not equal to 0. I repeat this is not equal to 0 for non-

ideal gases, ok. 
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 So, if we were to address the difference between real gases and ideal gases, there can be 

several points of differences. For example, one we talked about 𝜋𝑇. 𝜋𝑇 is equal to 0 for 

ideal gas, 𝜋𝑇  is not equal to 0 for non-ideal gas. Why? Because sometimes the gas 

molecules when you mix two gases and if these two gases are non-ideal, then they will 

interact with each other. So, interaction energy can also contribute to non-ideality. 

There is existence of non-zero Joule-Thompson coefficient. There can be difference in 

transport properties. I repeat there is difference in transport properties and there can be 

existence of non-zero Joule-Thompson coefficient. So, therefore, how to address the 

deviation from ideality in gases? Looking back at what you study in class 11 or class 12, 

Van der Waals equation of state in which A and B were introduced which reflected upon 

the attractive and repulsive parts of the interactions. Here we will talk about the virial 

equation of state and we will talk about virial coefficients. PVm upon RT which you 

remember was also called as compression factor, but here we are not going to talk in terms 

of compression factor. Here we are going to talk in terms of virial coefficients. Let us 

represent PVm by RT is equal to 1 plus B by Vm plus C by Vm square plus so on so on. If 

B, C all these numbers or all these coefficients are 0, then you simply have PVm is equal to 

RT, then it becomes an ideal gas. In this form of the equation B is called second virial 



coefficient, C is called third virial coefficient and so on. 

Obviously, these virial coefficients are going to depend upon temperature. Why? Because 

when the temperature is increased, the intermolecular interactions between the gas 

molecules will also be affected. Therefore, these virial coefficients B, C etcetera these virial 

coefficients vary with temperature. So, our purpose is to somehow connect these virial 

coefficients with canonical partition function, then we can move towards bringing in non-

ideality into our discussion. 

Let us do that. But before doing that, let us recall some of our earlier learnings. One of the 

earlier learning was that the total kinetic energy of a gas of molecules is some of the kinetic 

energies of individual molecules even when interactions are present. When we only talk 

about kinetic energy, I am not talking about potential. The total kinetic energy of a gas of 

molecules is some of the kinetic energies of individual molecules even when the 

interactions are present. That means, now in a real gas, the canonical partition function 

must factorize into a part which is arising from kinetic energy that is going to be same as 

that for the perfect gas and another factor called configurational integral. 
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 That is what is commented here. Thus, in a real gas, the canonical partition function 



factorizes into a part arising from the kinetic energy which is the same as that of perfect 

gas and a factor called configurational integral. This we will call as Z. Obviously, this Z 

which is configurational integral, it is going to depend upon intermolecular potentials. 

Now, this canonical partition function is represented as Z by λ raised to the power 3N.  

For perfect gas, you have already studied that this is equal to V raised to the power N by N 

factorial where V is the volume of the container and this is according to this definition 

because Q is then partition function for a collection of non-interacting particle. That means, 

if Z is equal to V raised to the power N by N factorial, we are talking about perfect gas. 

We are talking about non-interacting particles. Alright, let us move ahead. From the ideal 

gases, now let us move towards the real gas. 

When we talk about real gas, we are talking about intermolecular interactions. That means, 

we have to now in addition to the kinetic energy, we have to bring in the potential energy 

and let us represent potential energy as VN . This potential energy of interaction is related 

to the configurational part Z which was if you go back, this configurational integral Z for 

ideal gas was V raised to the power N by N factorial, but for a non-ideal gas, this will be 1 

over N factorial integration exponential minus beta VN dr 1, dr 2, etc, dr N. What are these 

dr, dr 1, dr 2, dr this integration of each one is equal to volume. We are not getting into the 

derivation of these. 
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You have learnt at some point, but we need to know in order to evaluate this, we need to 

know the potential. Though we are not getting into the derivation of this, but we can go 

reverse that we can show that this converts into the configurational integral for a perfect 

gas when you ignore the potential energy and when do you ignore the potential energy? 

When the interaction between all the particles is switched off to 0, perfect gas. If you put 

VN equal to 0, then exponential 0 is 1. In that case, Z is equal to 1 by N factorial dr 1, dr 2, 

etc, and since each one is volume, then this is V raised to the power N by N factorial and 

this is what the configurational integral was defined for an ideal gas. Distinguish between 

this VN and this VN , this is the potential energy and this is the volume of the container ok. 

Now, let us consider only pairs of particles. You can consider two particle interaction, you 

can consider 3, 4, 5, you can keep on increasing and that will bring in more complexity, 

but for a simple example, let us consider the interaction between only pairs of particles. 

So, we will write Z2, this is equal to 1 by 2 factorial exponential minus V2 by k T d r1 d r2, 

and using this, again we are not going into derivation. The second virial coefficient turns 

out to be V is equal to minus NA by 2 V into f integration of f dr1, dr2, where this f is 

expressed in terms of potential minus V2 by k T minus 1. 

NA is Avogadro constant. So, that means, if we know the potential, somehow if we know 

the potential, then we can have B. This f is equal to minus V2 by is called Meyer F function. 

Remember, this is called Meyer F function. Obviously, when you put V2 equal to 0, then 



exponential 0 becomes 1, 1 minus 1 becomes 0 and if f becomes 0, that means, then in that 

case B also becomes 0 right. It says it goes to 0 when two particles are so far apart that V2 

equal to 0. 
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So, if you are talking about the particles, which are very far apart that there is no interaction 

between them, then the interaction potential energy is 0. V2 is equal to 0. If V2 is equal to 

0, then your virial coefficient is also equal to 0. So, this explains that when the particles are 

very far apart, in that case this f f value turns out to be 0 and then you can see what happens 

to the value of B. Now, consider that the interaction intermolecular interaction depends 

only on the separation of the particles, but not on their relative orientation. 

Please listen carefully. When the intermolecular interaction depends only on the separation 

of the particle’s separation, let us represent by R, but not on their relative orientation. We 

can take an example for example, in closed shell atoms and tetrahedral or octahedral 

molecules. In that case, this equation B is equal to minus NA over 2 V into f d r1 d r2, where 

f is this is the same equation that we discussed earlier. This B transforms to minus 2 π NA 

0 to infinity f r square d r and this can be evaluated numerically provided we have this 

Meyer f function, which is dependent upon the potential. You can have depending upon 



the potential energy; you can calculate you can evaluate the second virial coefficient 

numerically alright. 
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Now, what we have is the expression for B, which now we have derived for when the 

potential energy only depends upon their potential energy only depends upon their 

separation. So, consider hard sphere potential. This hard sphere potential is infinite when 

the separation of the two molecule R is less than a certain value. Remember the potential 

energy curve, it will go take a dip and then again it will increase. So, we are using the same 

principle that when the separation of the two molecules, which is represented by R is less 

than or equal to certain value right, then the potential becomes infinite. 

For example, you see here if the potential energy for a certain values are less than sigma, 

it becomes infinite. Then you put V2 equal to infinite over here exponential minus infinite 

0, 0 minus 1 is minus 1 in that case f is equal to minus 1. So, if f is equal to minus 1, then 

B becomes you can connect this over here B becomes 2 π NA R square d r from 0 to sigma, 

sigma is that minimum value, which turns out to be 2 by 3 π NA times sigma Q. This is the 

case when the separation of the two molecules R is less than or equal to certain value. On 



the contrary if R is higher than sigma, let us say the molecule they are far apart, then you 

can take potential energy to be 0 in that case f also turns out to be 0. 
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So, what we have derived is that the second virial coefficient B is equal to 2 π NA 

integration 0 to sigma R square d r, which takes up this form 2 by 3 π NA times sigma Q. 

You remember that Van der Waals equation of state P is equal to R T over Vm minus B 

minus A over Vm square, where A took care of the attractive parts of the interaction and B 

took care of the repulsive part of the interaction. So, here also the hard sphere repulsive 

part of the intermolecular potential B that contributes to B in exactly in the same way, but 

the these are some of the extreme cases which we derived.  
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The question is can we find a potential the actual potential here we need to have the value 

of V2 to evaluate the exact B C or any other virial coefficient. So, can a potential be found 

which when the virial coefficients are evaluated provides the full Van der Waals equation 

of state. 

The answer is yes such a potential can be found. We have talked about second virial 

coefficient. Similarly, the extension of the discussion can be made to other virial 

coefficients and you will also require to have knowledge of how to find a potential which 

actually represents those intermolecular interactions, but that is beyond the scope of the 

current discussion. What I have discussed in this lecture is that the gases which do not 

follow ideality, which are not ideal, which are not perfect will show non ideal behavior and 

will undergo intermolecular interactions. How to incorporate those intermolecular 

interactions, how it is reflected into virial coefficients that is what we discussed in this 

lecture. I hope it was useful and it will form a basis for your higher level. Thank you very 

much. Thank you. 


