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             Contributions to equilibrium constant (continued) and Problems Solving 

Welcome back, we have been discussing Contributions to Equilibrium Construct. We have 

taken certain examples for discussing insights into different contributions that can go into 

explaining the equilibrium constant in terms of population of the various energy levels 

corresponding to reactants and products. In the previous lecture, we were discussing a 

special case where the reactants R have only one ground state available and the product P 

has energy states which are like uniform ladder of energy levels. And then by using an 

expression for equilibrium constant which is equal to the ratio of the molecular partition 

functions corresponding to products and reactants into exponential minus ΔE° by RT. And 

then we discussed that since it has only one energy level, soqis 1 and here we used the 

partition function for a uniform ladder of energy levels and after substitution we got this 

result. And that result is that equilibrium constant is equal to Boltzmann constant into 

temperature divided by this energy separation into exponential minus ΔE0 by RT.  
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 Note that this ΔE0 is positive, is a positive number here. And then we started discussing 

Le Chatelier principle. Recognize that this particular example is of an endothermic reaction 

because the energy corresponding to product is higher than the energy, zero-point energy 

corresponding to the reactants. Now let us discuss effect of temperature, effect of ΔE0 and 

temperature both we will discuss. 

 First of all case number 1, if ΔE0is positive and large, what I am trying to say here is that 

if this distance, this difference is very large, then this exponential term, if ΔE° is very large 

that means what will happen? If ΔE0is very large, then the value of equilibrium constant is 

going to be small. So, if ΔE0 is large that means exponential minus large quantity which is 

equal to 1 over exponential large quantity that is going to reduce the value of k, the k is 

going to be small. If k is small what that means that the population of the various energy 

levels corresponding to product is also small. It makes a sense because if ΔE0 is large, most 

of the molecules will be in the energy state corresponding to R that means k is going to be 

small. The second example or second case we will choose if ΔE° is small but positive, now 

you assume that this ΔE0is very not very large, it is positive but not very large. 

 

Then this is a reasonable number. Remember if we were saying if ΔE0 is large, then this 



factor is going to dominate. If ΔE0is small but still positive, this is a reasonable number but 

this pre-exponential factor is going to dominate. That means if we increase the temperature, 

then more and more molecules will occupy the energy levels corresponding to the product. 

So that means the equilibrium constant is also going to increase. 

 

I repeat if ΔE0is small but still positive, in that case this is a reasonable number and the 

overall value of k is going to be dependent upon this temperature. So according to this if 

you increase the temperature kT by E term is going to increase. So therefore, the 

equilibrium constant will increase. Isn't it in accordance with the Le Chatelier principle 

which says that for an endothermic reaction, if the temperature is increased, the value of 

equilibrium constant is going to increase. Therefore, based upon these considerations, we 

took only one energy level for reactant and we took uniform ladder of energy levels for 

product, we derived some equation and based on that equation we have been able to explain 

the effect of temperature. 

 

Our explanation is consistent with Le Chatelier principle. Remember that ΔG° is equal to 

minus RT log k. This particular discussion suggests that we cannot explain everything just 

based upon ΔG°. It is not just ΔG° but its components ΔG° has two components, one is 

ΔH° and the other is T ΔS°. I would say minus T ΔS°. 
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So these two components are explained by this differences in zero-point energy levels. This 

particular example belongs to endothermic reaction. So therefore, for the reaction to be 

spontaneous for an endothermic reaction, there has to be sufficient increase in entropy and 

that factor will be taken care of if more and more molecules here occupy these densely 

populated states of the product that will explain the increase in entropy for the process. So 

it is not just the free energy, its components ΔH° and minus T ΔS° become very very 

important in providing mechanistic insights into the process under consideration. So, these 

were the various contributions to equilibrium constant. 

 

It is very important to address these contributions because ΔH° ΔH in other words the 

enthalpy depends upon the nature of interaction. An entropy change depends upon not only 

the interaction but also associated with the changes in the surroundings. So it is not only 

the association between the two reactants, if that association between two reactants lead to 

release of lot of solvent molecules which were earlier oriented around the reacting groups 

and that release can increase the entropy. And here in terms of statistical thermodynamics, 

we are explaining them in terms of the population of various energy states. So not only 

enthalpy but entropy change is also very important consideration. 



 

 By now we have discussed all thermodynamic quantities starting with internal energy, we 

discussed entropy, we discussed Helmholtz energy, Gibbs energy, enthalpy, heat capacity, 

mean energy and then we have now discussed the equilibrium constant. We have connected 

all these thermodynamic quantities with either canonical partition function or molecular 

partition function. So, in a sense now we have shown that all these thermodynamic 

quantities can be experimentally measured with the help of spectroscopy. All right. Now a 

couple of lectures we will spend on solving numerical problems. 

One such numerical problem let us take it up today. The question is to calculate the 

vibrational contribution to molar heat capacity of nitrogen gas at 1000 K. The experimental 

value is 3.43 joules per K per mole. The question is calculation of vibrational contribution 

to molar heat capacity. 

See Slide Time: 11:18 

 

 

 How do we begin answering this question? First of all, we need to first decide that how to 

connect this molar heat capacity with something which may depend upon the molecular 

partition function. Molar heat capacity or heat capacity is change in internal energy when 

1 °C temperature change occurs in a system at constant volume. So, what we have now is 



to calculate the vibrational contribution to molar heat capacity of nitrogen gas at 1000 K. 

The experimental value is given to us and we know that heat capacity Cv is equal to Δ U 

by Δ T at constant volume. 

This we know. We also know that Cv,m is equal to Avogadro constant into temperature 

derivative of mean energy at constant volume that also we know. So that means why don't 

we first get an expression for the mean energy? Mean energy is minus 1 by q into Δq by Δ 

β at constant volume. Let us do that. We know that we are going to now derive an 

expression for mean vibrational energy which will be minus 1 by q vibrational into Δq 

vibrational Δ β at constant volume. This is what we are going to do. 

We also know that q vibrational is equal to 1 over 1 minus exponential minus β E. 

Therefore, your mean vibrational energy is going to be minus 1 by q that means minus 1 

minus exponential minus β E. This is minus 1 by q into derivative of 1 by exponential 

minus β E. This is going to be minus 1 over 1 minus exponential minus β E square into 

minus exponential minus β E into minus E. This is all going to be the expression for Ev 

that is minus 1 by q this is minus 1 by q into derivative of this is minus 1 by 1 over 1 minus 

exponential minus β E square derivative of this which is minus exponential minus β E then 

derivative of minus β E is minus E. 
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So what it comes to now? This is cancelling with this and we have E exponential minus β 

E over 1 minus exponential minus β E. I can write this again as E over exponential β E 

minus 1 which is equal to h c ν bar over exponential h c ν bar by k T minus 1. But remember 

h c ν bar is equal to k times θv. So, I can write this k times θv divided by exponential h c ν 

bar by k is equal to θv so θv by T minus 1. So therefore, my mean vibrational energy is k 

times θv over exponential θv by T minus 1. 

So what I have now? Mean vibrational energy is k times θv over exponential θv by T minus 

1. This is what I have let us double check k times θv over exponential θv by T minus 1. 

Now we are interested in Cv,m which is equal to NA times derivative of ΔE by with respect 

to T at constant volume. And since there is no volume term appearing in this I will as well 

may not write at constant volume but it is ok. So this is NA times I need to take derivative 

of this which is k θv is a constant number into minus 1 over exponential θv by T minus 1 

square into derivative of θv by T this will be minus θv by T square. 

What I have now? I have k times NA into there are two θv's θv square by T square minus 

minus cancel into 1 over exponential θv by T minus 1 square k times NA this is r. Now you 

see I have this derived this equation Cv,m is equal to R times θv by T whole square into yes 

there has to be another term over here there has to be exponential θv by T yes exponential 



θv by T yes we put there. So exponential θv by T over exponential θv by T minus 1 whole 

square. That means now if I have the numbers for θv and temperature, I can easily get the 

value. θv can be calculated from h c ν bar is equal to k θv from the knowledge of planks 

constant speed of light wave number is already given 2 3 4 4 cm-1 k Boltzmann constant 

you can get θv.  

That means your θv is going to be h c ν bar by k substitute the numbers and you get a value 

of θv which is 3374.3 374 K. Now θv by T T is 1000. So, θv by T is 3374 by 1000 which is 

3.374 you have the value of θv you have the value of θv by T substitute what you get is 

constant volume molar heat capacity equal to 3.48 joules per K per mole. 
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Continuing this further it also says calculate the fraction of molecule in vth vibrational state 

fraction population Pi is equal to Ni upon N is equal to exponential minus β Ei upon q that 

we know. Therefore, if I replace p i by fraction in the vth vibrational state this will be equal 

to exponential minus β vibrational energy level divided by k q q vibrational and what are 

these vibrational energy levels v h c ν bar because we know it is v plus half h c ν bar half 

h c ν bar we ignore remember the discussion in the vibrational partition function and we 

also know that q v is equal to 1 over 1 minus exponential minus β h c ν bar once you have 

that substitute this you end up with this expression once you have this expression then it is 



a matter of just putting the numbers. The fraction is given by this to calculate f 0 use v is 

equal to 0 to calculate f 0 use f 1 use v is equal to 1 that is all you are already given the 

wave number v value can be variable β is 1 over k t h is planks constant. So, use those 

numbers substitute over here you will find out that the fractional population of the ground 

state is nearly 1 and the first excited state the fractional population is 1.31 into 10 raise to 

the power minus 5 it is. 
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 So, less this comparison suggests that even at the temperature which is given temperature 

given to us is 1000 K even there you see the fractional population in the first excited state 

is only 1.31 into 10 raise to the power minus 5. That means, most of the molecules are in 

the ground state only. So, therefore, with the knowledge of the partition functions 

corresponding to particular mode of motion and the fractional population we can calculate 

the fractions corresponding of the molecules in the ground state fraction of the molecule in 

the first excited state provided we know we remember the formulae or we are able to derive 

the formulae appropriately. In the lectures ahead we are going to take up more examples 

and do some calculations. 



So, that the applications of the derived equations become easier to understand. Thank you 

very much.  

Thank you. 


