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Relation between equilibrium constant K and partition function q (Applications-1) 

Welcome back. We have been discussing equilibrium constant. Equilibrium constant 

which is a very important thermodynamic quantity because not only from an academic 

point of view, but from an industrial point of view, this thermodynamic quantity derives a 

lot of meaning. As discussed in the previous lecture, in industry it is important to have as 

much yield as possible and equilibrium constant is nothing, but the ratio of the activities of 

products divided by that of the reactants. And if activities are equal to concentrations, we 

generally write this as ratios of the concentrations weighted by their stoichiometric 

numbers. And then in industry we are also interested in knowing how to optimize various 

parameters, so that you can improve upon the value of equilibrium constant. 

In statistical thermodynamics, we are interested in connecting equilibrium constant with 

the partition function, and that is what we have done in the previous lecture, where we 

connected equilibrium constant with molecular partition function by the expression which 

is given on this slide. Equilibrium constant is equal to the product of 𝑞𝑗,𝑚
0  by NA raised to 

the power stoichiometric number into exponential minus Δ R E° by R T. We also discussed 

that suppose if we apply this to this kind of reaction A moles of A plus B moles of B in 

equilibrium with C moles of C, then how to write this K is the product of 𝑞𝑗,𝑚
0  by NA raised 

to the power ν raised to the power g into exponential minus ΔrE° by R T, which is the same 

expression that is written above. But what I will do is now I will put a positive number for 

the products and a negative stoichiometric number for the reactants. 

See Slide time: 5:17 



 

So, how we expand it? Positive for the products, product is C that means 𝑞𝑗 ,𝑚
°  by NA, this 

will be raised to the power c into 𝑞𝑎,𝑚
°  by NA raised to the power minus a pay attention to 

this I am putting a negative sign because a is a reactant into 𝑞𝑏,𝑚
°  by NA raised to the power 

minus b again because b is a reactant then into exponential minus Δ E° by R T. This can 

further be written as K equal to now I will write this as q m by NA raised to the power c 

divided by 𝑞𝑎,𝑚
°  by NA raised to the power a continuation into 𝑞𝑏,𝑚

°  by NA raised to the 

power b into exponential minus ΔE° by RT.  
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This is how we expand this product, that means it is a similar way of writing equilibrium 

constant as you have done in discussing chemical thermodynamics that is for the products 

you write in the numerator and for the reactants you write in the denominator and then 

there is an additional term which is an exponential term taking into account the difference 

in zero-point energy that has to come in this expression.  
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Now, let us take an actual example. The question is to evaluate the equilibrium constant 

for the dissociation of Na2 going to 2NA. This is the reaction which is going on which is 

given to us, this is dissociation of di sodium at 1000 K from the following data: rotational 

constant is given, rotational constant means it is given for Na2 because NA cannot rotate, 

that is given as 0.1547 cm-1; vibrational wave number, that means this is also given for Na2, 

that is 159.2 cm-1; and you have zero-point dissociation energy that is also for Na2, that is 

70.4 kilojoules per mole.  

Further, it is given to us that the sodium atoms have a doublet ground term, that means the 

degeneracy of the electronic states for a sodium atom is 2. This is the data given to us; we 

are supposed to find the equilibrium constant for the dissociation of di sodium to sodium 

at 1000 K.  
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How we will approach this problem is first we will write an expression for Na2 by Na2 by 

K as we just discussed we will write K for Na square by Na square it by 𝑞𝑁𝑎2 divided by 

NA right this is for the numerator I am already squaring it this is for the denominator and 

then I have exponential minus Δ E(0) by R T. This is now equal to 𝑞𝑁𝑎
2   divided by 𝑞𝑁𝑎2

 

into 1 over NA this NA is Avogadro constant not sodium into exponential instead of Δ E (0) 

let me write D (0) by R T what we have is the ratio of partition functions for sodium squared 

divided by the partition function for di sodium 1 by NA which comes from this NA square 

and NA and then the exponential term is there. Now, you remember that NA is an atom 

sodium atom and then you have 𝑞𝑁𝑎2
 , this is a di sodium that means it is a molecule. So, 

therefore, we have to carefully decide what contributions come in for the atom you have 

only translational contribution and you may have the electronic contribution. 
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So, therefore, what I will do is I will write here that q of sodium only that means q 

translational sodium square into if there is degeneracy of sodium divided by, I have q 

translational for di sodium now remember that this is a molecule. So, it will not only have 

translational degree of freedom, you will also have rotational di sodium, you will also have 

vibrational di sodium into 1 over NA is already there into there is 1 over 𝑔𝑁𝑎2
 square into 

is exponential minus D (0) by R T.  
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So, since we are talking about Na2 in equilibrium with 2Na and we write the equilibrium 

constant as q translational of NA square into the degeneracy of the ground state for NA 

divided by q translational for Na2 into q rotational Na2 into q vibrational Na2 into electronic 

contribution degeneracy of Na2 and there was 1 over NA term and then there was 

exponential minus D (0) by R T. So, we have this expression now we very much know that 

q translational is 𝑉 𝑚
°  by λ Na

3, but this is squared this is for the translational contribution 

then degeneracy of Na I will write like this in the denominator I will write 𝑉 𝑚
°  because 

everything we are treating as an ideal gas divided by λ cube of Na2 this is translational 

contribution I will write rotational as such I will write Na2 into q vibrational; I have Na2 

into the degeneracy of the ground state Na2 into 1 over Na into exponential minus D (0) by 

R T. Please note that I am writing here standard state conditions because although I am not 

writing °°° with all the q's it is understood that these are all standard state quantities. 

Now, let us try to further solve it. So, now, I have K is equal to 𝑉 𝑚
°  square by 𝑉 𝑚

°  I will just 

write 𝑉 𝑚
°  right 1 is square 1 is 1 term and here only let me include NA I will just bring NA 

along with this. Now, what I have is 𝜆 𝑁𝑎2

3  over 𝜆 𝑁𝑎
6  this is the ratio of the thermal 

wavelengths into G of NA over G of Na2 this also let me combined into 1 over q R Na2 into 

q V Na2 into exponential minus D (0) by RT this is what I have. Now, we can further work 

upon this and see what we get P 𝑉 𝑚
°  is equal to RT I am consuming N because 𝑉 𝑚

°  m means 



molar. So, can I write this R is equal to K times Avogadro constant into T R is K times N 

A. So, therefore, 𝑉 𝑚
°  by NA this NA is Avogadro constant is K T by P° right this is also not 

because this standard state we are talking about. So, 𝑉 𝑚
°  by NA this NA is Avogadro 

constant is K T by P°. So, instead of this I can write K T by P° if I write K T by P° then I 

do not need the volume because we are considering the standard state conditions and 

applying the ideal gas equation P° V° is equal to RT I can get 𝑉 𝑚
°  by NA in terms of K T 

by P° K is a constant T is a given temperature P° is 1 bar that means you need not be given 

the volume. Once I substitute this K T by P° over here then I have this K T by P° into the 

ratio of the thermal wavelengths ratio of the degeneracies of the ground state electronic 

ground state and then I need the information about the rotational partition function I need 

the information about vibrational partition function and I also need the dissociation energy 

zero-point dissociation energy and that is what is written in this expression K T by P° you 

have this is g x square not q g x square λ x 2 cube g x 2 q r x 2 q vibrational x 2 λ x 6 

exponential minus d 0 by RT. That means now the next problem is to evaluate the thermal 

wavelengths rotational partition function vibrational partition function and then proceed 

with the calculation.  

The data given to us for λ is equal to β h square by 2 π m square root which is equal to h 

by 2 π m K T square root β is equal to 1 over K T h is Planck's constant we know 6.626 

into 10 to the power minus 2 into 10 to the power minus 34 joules per second K is 

Boltzmann constant 1.381 into 10 to the power minus 23 joules per K T the temperature 

given to us. So, we can calculate the thermal wavelength from the knowledge of the masses 

of Na2 and NA thermal wavelength can be calculated by using these formulas the thermal 

wavelength of Na2 comes out to 8.14 picometers whereas, that for Na itself the sodium 

atom it comes out to 11.5 picometers this can be obtained by appropriately substituting the 

numbers over here. So, we know how to deal with the thermal wavelength q rotational Na2 

is a linear diatomic molecule. So, therefore, the expression that you require for the 

molecular partition function is that for a linear rotor and we know that q R for a linear rotor 

is 1 over sigma h c β B remember that this equation is a high-temperature result that means 

your temperature is equal if it is much higher than the characteristic rotational temperature 

then only you will use this equation. That means what you will do is you will use this 

equation K θ R is equal to h c B calculate the value of θ R because you are given Planck's 



constant you know speed of light you know and the rotational constant you know the 

Boltzmann constant also you know substitute these numbers and get the value of rotational 

temperature you will see in this case where the temperature given is 1000 K is much much 

higher than the rotational temperature you calculate and check yourself yes it comes out to 

be the temperature given temperature is much much higher than the rotational temperature. 

So, that means, I am justified now to use this expression qr is equal to 1 over σ h c β B we 

are dealing with Na2 let us say first we will talk about Na2. 

So, if I put like this NA Na a rotation by 180 degrees leaves the molecule in an unidentifiable 

state. Therefore, in complete one rotation, the same state will appear twice that means 

sigma in this case is equal to 2 you know the value of sigma now you know the Planck's 

constant speed of light β is 1 over k T and B is given to you once you substitute this you 

will see that you get a q R value of 2246 sodium atom is atom you cannot have rotation in 

that that means we do not need to worry about the rotational contribution to Na now comes 

vibrational contribution again sodium atom cannot vibrate, but sodium atom cannot vibrate, 

but sodium molecule can vibrate. So, when we discuss vibrational contribution di sodium 

linear molecule. So, the number of normal number of modes of vibration is 3 N minus 5 is 

equal to 6 minus 5 is only 1 normal mode of vibration 1 normal mode of vibration and now 

if you look at the problem statement rotational constant is given, we have already used that 

in calculating the rotational partition function vibrational wave number is the given and we 

are also given the sodium atoms have doublet ground terms. So, by using q v is equal to 1 

over 1 minus exponential minus β h c ν bar this is the expression to be used remember this 

expression which I have written over here this can be used at any temperature there is no 

high-temperature approximation used over here an alternate way of calculation can be just 

like you evaluated the value of rotational temperature.  

Similarly, you evaluate the value of vibrational temperature from k θv is equal to h c ν bar 

calculate θv compare with temperature and then use the high-temperature result not 

required because this is a straightforward expression you know β is 1 over K T you know 

Planck's constant you know speed of light and we know the vibrational wave number. Once 

you substitute these numbers what we have is 4.885 this is the number that we are going to 

get third one the degeneracy of the electronic ground state for sodium atom is 2 the 



degeneracy for the ground state electronic state for disodium molecule is 1. So, by now we 

have everything q t can be calculated from Φm° by λ cube, but in fact you do not need to 

calculate because the expression that we are going to use k is equal to k times T this is 

𝑔𝑥
2𝜆𝑥

3  2𝑝°/𝑔𝑥 2𝑞𝑟
𝑥 2 𝑞𝑣

𝑥 2𝜆6 we know we know this we know this we know this this this 

and dissociation energy is given to us let us look at whether it is given or not the zero-point 

dissociation energy is 70.4 kilojoules per mole. 

Therefore, since we are given the value per mole, you will use d 0 by R T if it were given 

per molecule then you would have used d 0 by k T the value of p° is equal to 1 bar this is 

because we are invoking standard states why standard state because in all our calculations 

which are the expressions are based upon ΔG° is minus R T log k and we have connected 

everything with the standard state, and we have calculated the value of p° by Δ or the 

change in Gibbs free energy under standard state conditions. When we say standard state, 

then we are saying it is 1 bar pressure. So, now we have all the information. The given 

reaction was di-sodium going to 2Na, and from the knowledge of                        

  𝐾 =  
𝑞𝑗,𝑚 

°

𝑁𝑎

𝜈𝑔 𝑒𝑥𝑝(−∆𝑟𝐸°/𝑅𝑇)  

we used this expression and then converted it into this particular expression. By 

substituting the various numbers at 1000 K, you see here when you solve the numerical 

problems, make sure that you are using the appropriate units. If you do not put the 

appropriate units, your final answer is going to be wrong. The given pressure P° is equal 

to 1 bar, and then you have converted this bar (1 bar) into Pascals (10^5 Pascals). Why 

introduce Pascals? Because it will take care of the units. 

So, you have the Boltzmann constant, you have temperature, you have this degeneracy 

factor, you have this vector, you have this ratio of the thermal wavelengths, and then you 

have this rotational and vibrational contribution. Everything put together, you see at 1000 

K, the value is 2.42.  
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What we have done is that we have calculated the values of various molecular partition 

functions, substituted those values, used the value of dissociation energy, and we can easily 

get the value of the equilibrium constant. The value of the equilibrium constant obtained 

here is not very high, only 2.42. That means this reaction does not have a very high yield; 

the Δ G° of this reaction is not very highly negative. Now, it is a different matter how to 

improve this value. Improving the value of the equilibrium constant depends on various 

factors. For that, you need Le Chatelier's principle, but in this case, what we have done is 

we have restricted our discussion only to the equilibrium constant. So, therefore, just to 

recap what we have done is that by starting with this equation, we have identified that what 

different contributions go into the molecular partition function and from those 

contributions, we have evaluated this equilibrium constant. The calculations may appear a 

little lengthy, but the procedure is straightforward. You need information on translational 

contribution, which depends upon the thermal wavelength, rotational contribution, 

vibrational contribution, electronic contribution, and the difference in zero-point energies. 

Once you have this information, the calculations of the equilibrium constant are very easy. 

We will take some more examples to further clarify about what factors go into the 

evaluation of the equilibrium constant. Remember that this equation is very simple where 

you have only diatomic sodium and you have sodium atom. If you have a reaction in which 

there are triatomic molecules and multi-atomic polyatomic molecules, the situation can be 



complex. One such example we will take and further discuss, but that we will do in the 

next lecture. Thank you very much. Thank you. 


