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Mean Energies (Applications) 

Welcome back. We have been discussing Mean Energies and follow-up of Mean Energies; 

we started discussing Heat Capacities. Basically, we discussed the applications of Mean 

Energies in further discussing Heat Capacities because we connected Heat Capacity at 

constant volume with the temperature derivative of Mean Energy. Mean Energy, which we 

discussed a couple of lectures before, is given by minus 1 by qM del q by del β at constant 

volume. Where this m mode represents translational, rotational, vibrational, and electronic. 

And then we discussed in detail how to connect Heat Capacity at constant volume with the 

temperature derivative of Mean Energies. 
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And we concluded that for a gas at room temperature, the translational contribution to 

constant volume Heat Capacity is 3 by 2 R. And then we discussed rotational contribution 

for a linear rotor is equal to R, and for a non-linear rotor, it is 3 by 2 R. For each normal 

mode of vibration, the contribution is R provided all the modes are fully active. And based 

upon that discussion, we came up with this expression that is the constant volume molar 

Heat Capacity is represented by 1 by 2 into 3 plus 𝜈𝑅
∗   plus 2 ν star R. 
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And just to revisit that 𝜈𝑅
∗   is equal to 2 when the rotor is linear, and it is equal to 3 when 

the rotor is non-linear. And  𝜈𝑉
∗   is equal to 1 for each normal mode of vibration. This 

equation gives a very good estimate of constant volume Heat Capacity as long as the 

temperature is much above its relevant or related characteristic rotational temperature or 

vibrational temperature. And if the temperature difference is very huge, for example, if the 

vibrational mode is not active, that means if the experimental temperature is much lower 

than the characteristic vibrational temperature, then you can even put  𝜈𝑉
∗   equal to 0. After 

that, we discussed this plot that initially 3 by 2 R contribution is there, and for a linear rotor 

as the temperature increases, the full R contribution is added. 



So, 3 by 2 plus 1 is 5 by 2 R, and then you further increase the temperature, and when the 

temperature is much higher than the characteristic vibrational temperature, another R will 

add up. So, you have 7 by 2 R further increase in temperature leads to dissociation of the 

molecule, and after dissociation, a diatomic molecule will form 2 atoms, and each atom 

will have translational degree of freedom which is 3 by 2 R. So, 3 by 2 into 2 is equal to 3 

R, this I have shown for a very simple diatomic molecule. Now, suppose if you are given 

an exercise to make a similar plot for a linear triatomic molecule or a non-linear triatomic 

molecule, you should be able to make similar plots. You have to take into account whether 

the molecule is linear or the molecule is non-linear because the rotational contribution will 

be decided by that, and then after the dissociation again you have to explain your answer 

with justification. Now, let us discuss an application: estimate the molar constant volume 

heat capacity of water vapor at 100 °C.  
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Vibrational wave numbers are given which is some example, but these vibrational wave 

numbers you can see here I have included that in the table. Now, once the vibrational wave 

numbers are there, as I will discuss with you, you can calculate the vibrational temperature. 

Rotational constants are also given: 27.9, 14.5, and 9.3 cm-1, all right. Now, if you carefully 

look at the problem statement, it says estimate; it does not say calculate. It's just an 



estimation, that means, an approximate number for constant heat capacity, and if I go back, 

you can use this expression to estimate. What you need to know is 𝜈𝑅
∗  , what should be the 

value of 𝜈𝑅
∗  , and what should be the value of  𝜈𝑉

∗  , ok. So, what we have is CVm is equal to 

1 by 2 into 3 plus 𝜈𝑅
∗   plus 2  𝜈𝑉

∗   multiplied by R. 

So, this is the constant volume heat capacity per mole. Now, first of all, we need to judge 

what will be the values for 𝜈𝑅
∗   and what will be the values for  𝜈𝑉

∗  . Let us talk about first 

vibration because generally, we say that the vibrational energy levels are far separated. So, 

their contribution may be very less. First of all, the first step is to calculate the characteristic 

vibrational temperature. 

How do you calculate characteristic vibrational temperature? Use h c ν bar is equal to k 

theta v. We are interested in finding out the value of theta v. From the knowledge of 

Planck's constant, speed of light, wave number, and Boltzmann constant. Now, you can 

look at this table, the wave numbers: first one 3656.7, second one 1594.8, and third, this is 

water. Water is a non-linear molecule. So, therefore, normal modes of vibration are 3n 

minus 6, which is 3 into 3n is 3 9 minus 6 is equal to 3. And these 3 normal modes of 

vibration take place at 3656.7, 1594.8, and 1594.8. 

Now, by using this expression, we can calculate 3 vibrational temperatures. The 

characteristic vibrational temperatures by using this method turn out to be 5300, 2300, and 

5400 K. These are roundabout figures. So, you see 5300 correspond to 3656.7. Now, 5400 

correspond to 3755.8. The higher the value of the wave number, the higher is the vibrational 

temperature. But if you look at the lowest wave number 1594.8 is the lowest wave number 

corresponding to that the characteristic vibrational temperature is 2300 K and the 

experimental temperature is 373 K, 100 °C. 2300 is much much higher than 373 K. So, I 

can write that the temperature which is 373 K is much much less than the vibrational 

temperature, even for the normal mode which is the lowest in wave number. So, 

automatically then the wave numbers which are higher that those are ruled out. 

So, that means vibrations are not excited at 373 K simply because the temperature, which 

is 373 K, is much much lower than the characteristic vibrational temperature. So, we do 

not need to worry about the vibrational contribution to constant molar volume heat 



capacity. Now, that means I can write 𝜈𝑉
∗   I will put to be 0 because the vibrations are not 

active. Now, we also have rotational constants given water non-linear molecule it can, it is 

a triatomic molecule it can undergo rotational motion and use h c b is equal to k theta r. 

That means this rotational temperature theta R is h c B upon k b is h cross by 4 pi c I this 

all we have discussed earlier. And now if you look at the rotational constants given 27.9, 

14.5, 9.3 what I will do is I will first calculate the rotational temperature for the highest 

rotational constant. Because if the characteristic rotational temperature corresponding to 

the highest rotational constant is much lower than the experimental temperature then the 

other two rotational constants are automatically covered. So, the strategy here should be 

first you calculate corresponding to 27.9 when you calculate corresponding to 27.9 the 

rotational temperature comes to 40 k. So, that means if I put 40 k experimental temperature 

is 373 K of course, this is much higher. That means t is much higher than theta R this is 

corresponding to the highest rotational constant. That means rotations are fully active all 

three rotational constants will give a characteristic rotational temperature which is much 

lower than the experimental temperature. That means all these rotational modes are fully 

excited. So, that means what value should I put 𝜈𝑅
∗   it is a non-linear molecule I will put a 

value of 3. We are using this expression CVm is equal to 1 by 2 3 plus 𝜈𝑅
∗   plus 2 𝜈𝑉

∗  into R. 

As we just discussed vibrations are not active at all at that temperature right the vibrational 

contribution will be 0 𝜈𝑉
∗  is equal to 0 𝜈𝑅

∗  we just discussed all three rotations or rotational 

motions around three axis is fully active therefore, this value 𝜈𝑅
∗   will be equal to 3.  
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So, therefore what we have this will be CVm will be equal to 1 by 2 3 plus 3 R which is 

equal to 3 R, R is gas constant. So, R is 8.3145 joules per K per mole once you put that 

number you are going to get a value close to 25 joules per K per mole translational 

contribution 3 by 2 R rotational contribution 3 by 2 R. So, 12.5 plus 12.5 is 25 joules per 

K per mole this is predicted the experimental value is 26.1 joule per K per mole. So, there 

is a difference if you compare there is a difference of about 1.1 joule per K per mole which 

is not very large, but we should be able to assign some reason to this discrepancy the 

discrepancy is probably due to deviations from perfect gas behavior what we are 

considering here water molecule like a perfect gas water vapors, but water vapors are not 

actually like an ideal gas. So, therefore, this deviation from ideality could be one reason 

for this discrepancy in the theoretical as well as the experimental value. So, what is 

important here it is important to know what value we should put for 𝜈𝑅
∗   and what value we 

should put for 𝜈𝑉
∗  and for that what we need to do is to know characteristic rotational 

temperature and characteristic vibrational temperature. So, that we can decide whether to 

put 𝜈𝑟
∗  equal to 3 or 0 or 2 or 0 and  𝜈𝑉

∗   equal to 1 or 0 that is by the comparison of 

experimental temperature and characteristic temperature of that mode of motion, but 

remember that this expression can only be used to estimate the molar constant volume heat 



capacity it is not an actual calculation it is simply an approximation it is simply an 

estimation of the value. 
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Now, let us discuss a relevant numerical problem. So, that we can understand these 

derivations more importantly and more clearly consider a system with energy levels Ej is 

equal to j times E and there are n molecules question part 1 question part a is show that if 

mean energy per molecule is a E, then the temperature is given by this β is equal to 1 over 

E log 1 plus 1 by a. Let us go step by step first we will solve this part. 
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What is given to us is that the energy levels are given by Ej is equal to j times E and if the 

mean energy per molecule is a E, then the temperature should be given by this expression 

of β fine. Let us try to solve this first another parts we will come to them later. Parts we 

will come to them later. So, what is given to us is E what is given to us is Ej is equal to j 

times E that means, Q will be equal to summation j exponential minus βEj which is equal 

to summation j exponential minus βj times E because Ej is equal to jE this is equal to when 

start putting now j from 0 onwards 0 1 2 3 4. So, 1 plus exponential minus β E plus 

exponential minus 2 β E plus 1. 

So, this is equal to 1 plus exponential minus β E plus 1 plus exponential minus 2βE plus 

exponential minus 3 β E and so on which I can simplify to q is equal to 1 plus exponential 

minus β E plus exponential minus β E square plus so on. This reminds you of uniform 

ladder of energy levels you remember harmonic oscillator when we discussed this. This is 

like a uniform ladder of energy level and this is a series geometric progression series G P 

series and sum of the G P series is equal to 1 over 1 minus exponential minus β E. This is 

the expression for the molecular partition function, but what is our problem statement we 

have to show that this β is given by 1 by E into log 1 by A provided the mean energy per 

molecule is A times E.   
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So, let us write down an expression for mean energy, mean energy per molecule is equal 

to will be equal to U - U (0) by N this is mean energy and U - U (0) is equal to minus N by 

Q del Q del β at constant volume. This is mean energy per molecule and this is mean energy 

this is U - U (0) and there is 1 by N factor here already there.  
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So, what we have is minus 1 by q del q del β at constant volume. So, mean energy per 

molecule is equal to minus 1 by q minus 1 minus exponential minus βE this is minus 1 by 

q. I am using this into derivative of this q with respect to β. This will be minus 1 over 1 

minus exponential minus β E square into minus exponential minus βE into minus E this 

and this can cancel and there are four negatives which become positive. So, you have E 

exponential minus β E over 1 minus exponential minus β E.  

Let us carry it forward mean energy per molecule what we are getting is equal to E times 

exponential minus β E over 1 minus exponential minus βE this is what we get. So, this is 

what wEjust got this one. Now, let us further try to solve this mean energy will be equal to 

I can write this as exponent E divided by exponential βE minus 1 I multiply and divide the 

numerator and denominator by exponential βE. So, I have come up now with this 

expression for mean energy. Let us go back to the problem statement now. 

Now we are told that treat mean energy to be equal to A times E mean energy per molecule 

treat it equal to A times E let us do that I will write this to be equal to A times E.  So, what 

I have now E and E cancel and I have exponential β E minus 1 is equal to 1 over A. So, 

exponential β E is equal to 1 plus 1 by A that means β E is equal to log 1 plus 1 by A in 

other words now I have β is equal to 1 by E log 1 plus 1 by A. So, this is what I have done. 

Now, I have β is equal to 1 by E into log 1 plus 1 by A. So, therefore, I have β is equal to 



1 by k T, which means the temperature, whether you express it in terms of T or you express 

it in terms of β, we should be able to get this from the knowledge of the value of E, which 

is the energy separation, and the number A. So, as you might have noted, we started with 

the definition of the partition function since we were given a scheme that Ej is equal to j 

times E. We used that, and we found that the overall expression for the partition function 

was coming to be equal to the sum of a G P. So, by using that, we got an expression for the 

partition function, and by using that partition function, we put that expression into the 

expression for mean energy. That is by using internal energy and then by mathematical 

manipulations, we were able to get this expression for temperature.  
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There are still some more parts of the question that is, evaluate the temperature for a system 

in which the mean energy is E by taking E equal to 50 cm-1. The second part is, calculate 

the molecular partition function q for the system when the mean energy is a E. And third 

is, show that the entropy of the system is S over n k is equal to 1 plus a log 1 plus a minus 

a log a and evaluate this expression for mean energy E. So, there are three or four parts still 

remaining for this question, but if you look at what is requested, what is asked is the 

expression for molecular partition function. We already got that. The second one is entropy; 



that means, then you have to now think how to connect entropy with the molecular partition 

function. That is where our previous knowledge will be used when you connect entropy 

with the canonical partition function or molecular partition function, but we will be 

discussing all these in detail in the next lecture. Thank you very much. Thank you. 


