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                                              Rotational Partition Function 

In this lecture, we will discuss further on Rotational Partition Function. By now, we have 

had a thorough discussion on rotational partition function for a linear rotor and a non-linear 

rotor. Now, let us apply those learned concepts in solving some numerical problems. We 

have discussed that for a non-linear rotor, we need to have the knowledge of A, B and C. 

And for a linear rotor, we need to have a knowledge about B, rotational constant.  And 

rotational constant basically involves moment of inertia and moment of inertia involves 

knowledge about the mass and the bond length. 

So, with this background, now we will start discussing some numerical problems. Let us 

revisit that symmetry number is very very important, because symmetry number that comes 

in the denominator and reduces the value of qR. Let us now consider this numerical 

problem.  The NOF molecule is an asymmetric rotor.  
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It is given information asymmetric rotor. You can take a look at the structure of molecular 

structure of NOF. It is asymmetric. One side is oxygen, other side is flow unit with 

rotational constants 3.1752 centimeter inverse, 0. 
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395 one-centimeter inverse and 0.3505-centimeter inverse. So, basically these are A, B and 

C. And we have been asked to calculate the rotational partition function of the molecule at 

100 °C. Now, once we are asked to calculate the rotational partition function, then we need 

to make a decision that whether to go by direct summation method or to go by high 

temperature approximation. 

 In order to use high temperature approximation, we need to calculate characteristic 

rotational temperature. And how do we calculate characteristic rotational temperature is 

kθr is equal to h C B or you can have kθr is equal to h C A, kθr is equal to h C C. So, you 

will have the rotational temperature.  The values of h C B everything is available. So, once 

we calculate θr, if temperature is much much higher than θr or characteristic rotational 

temperature, then we can straight away go ahead and use the high temperature 

approximation result. 

In this case, you please calculate yourself, find out the value of θr and you will  find out 

you will observe that 100 °C which is 373 K is much much higher  than any of the θr's 

corresponding to A B and C. And once you establish that, then you are free to use this high 

temperature approximation result. k is Boltzmann constant, T is temperature, h is Planck's 

constant, C is the speed of light, A B C all these three values are given to you. Another 

alternate form which is a simplified form comprising of k h C because these all are constant. 

So, you combine all these k h c also includes π into all these constants multiplied. 
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It transforms into 1.0270 divided by symmetry number into substitute temperature in K 

raise to the power 3 by 2 and put A B C each one in centimeter inverse. So, it becomes 

centimeter minus 3, it is a square root. We should know this formula and this formula leads 

to another formula where you combine k h C π, these are all constants combine them and 

the value is 1.0270.  So therefore, we just need to now substitute the values. So, what we 

will have now qR, you can use any of the result. Let us say if I use 1.0270, now σ here if 

you rotate the molecule by 180 degree centigrade, fluorine will be on the other side, oxygen 

will be on this side. So therefore, it is distinguishable that means σ is equal to 1 here. So, 

once  I have σ equal to 1 into temperature in  K 373 raise to the power 3 by 2 and  A B C 

each one in centimeter inverse, you have 3.1752 into 0.3951 into 0.3505 raise  to the power 

1 by 2, treat this as separate and once you solve, you should get a value  of 1.12 into 10 

raise to the power 4. 

Please note that this number is very high.  So, for a non-linear rotor obviously, the value 

of rotational contribution to partition function is inversely proportional to A B C and A B 

C involves moment of inertia h cross by 4 π c I right. So, the higher the value of mass, then 

the higher will be the value of moment of inertia and since moment of inertia comes in the 

denominator for A B C. So, higher value of moment of inertia will lower the value of A B 

or C and if A and B and C are low, the value of q r is going to be high. The previous 

example in the previous lecture, we talked about oxygen. 



The value was something around 79. Here we are talking about NOF molecule and see, but 

the value the temperature here is 100 degree centigrade. At 100 °C, you have 1.12 into 10 

raise to the power 4 thermally accessible rotational states alright.  I hope this is clear. When 

we want to address rotational partition function, we need to identify this I am saying again 

and again.  
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Is it a linear rotor or is it a non-linear rotor and the third thing we need to know what is the 

value of symmetry. The other information which you need is in this case, linear rotor means 

you need the value of rotational constant B non-linear rotor. You need to have the value of 

A B and C. Everything else is a constant there h planks constant k Boltzmann constant c 

speed of light everything else is a constant and the fourth thing which you need is mass or 

more precisely you need the reduced mass. 

Once you have this information, it is very easy to obtain the value of rotational partition 

function alright. Let us move ahead. We will also now discuss some associated numerical 

problems. We have earlier discussed that pressure is given by k T del log Q by del B. Q is 

the canonical partition function. 

Canonical partition function can be written in terms of molecular partition function that is 

either Q is equal to Q raise to the power n or Q is equal to Q raise to the power n by n 



factorial. The problem here which is being discussed says calculate the equation of state 

associated with the partition function Q which is given by 1 by n factorial 2 π m over β H 

square raise to the power 3 n by 2 into V minus n B raise to the power n into β A n square 

by B. This n V B these are the constraints n V β. β is 1 by k T. So, essentially it is n V T 

that means it is a canonical partition function and if you look at this expression carefully, 

it involves B and A.  
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So, that reminds you of Van der Waals equation of state where the attraction and repulsion 

terms are included.  The question is to derive or calculate the equation of state. What is an 

equation of state? An equation of state is an equation which connects P V and T. For ideal 

gas P V is equal to n R T. For non-ideal gas, we should get an expression from the given 

expression because the given expression involves B and A which are repulsive and 

attractive parameters. 

So, since we want to derive an expression between P V and T, it is wise to start with the 

expression for pressure and pressure is equal to k T times del log Q del V at constant 

temperature. We need partial derivative of Q or log Q with respect to volume at constant 

temperature. So, let us now write an expression for log Q because we will need to take 



derivative of log Q. Let us write log Q. Log Q is equal to let me write first V minus n B 

term that will be n log V minus n B plus β n B. 
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So, β A n square by V log E is 1 plus you have terms containing m β n and some other 

constants. Why I wrote specifically only two terms is that I need to know the value of  the 

partial derivative. So, let us now take derivative of this constant term. So, let us now take 

partial derivative with respect to volume at constant temperature and this  first part of this 

equation n is constant, π is constant for a given system, m is constant,  term with respect to 

volume is going to be 0.  So, let us now take derivative of log Q with respect to volume at 

constant temperature because this is what I need over here. 

So, therefore, let us take the derivative. Del log Q with respect to volume at constant 

temperature is going to be n log Q plus n B at constant temperature over V minus n B. This 

is for the first term. For the second term, β A n are constants of 1 over V that means minus 

β A n square over V square and all other terms the derivative is 0. This is del log Q by del 

V at constant temperature. 

And, this is equal to P over k T from this. If I substitute this over here, then I get this is 

equal to P over k T. So, let us continue. What we have now is P over k T is equal to n over 



V minus n B, n over V minus n B minus β A n square by V square minus β A n square by 

V square. 
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This is what it is.  So, therefore, P is equal to n k T over k T. So, this is what we have. So, 

this is what V minus n B minus β is 1 over k T, β is 1 over k T into k T into A n square 

over V square. This k T and this k T cancel. So, P plus A n square by V square is equal to 

n k T over V minus n B. 

That is what we get. And, when you rearrange this, if you put this in one bracket, so this 

into V minus n B is equal to n k T. In fact, n k T is equal to n is equal to small n number of 

moles into Avogadro constant into Boltzmann constant into temperature and that k times n 

A is equal to R is equal to n R T. I can write this is equal to n R T. And, I am sure that you 

recognize this expression. This is Van der Waals equation of state. 

For ideal gas, P V is equal to n R T because you ignore A and B. For a real gas or a non-

ideal gas where attractive and repulsive interactions can be present, the equation is 

modified to P plus A n square by V square into V minus n B is equal to n R T. This is the 

Van der Waals equation of state. And, that is what the question was that derive an equation 



of state for the given canonical partition function.  So, by statistical means, we have now 

arrived at the same equation which you have studied in theory of ideal and non-ideal gases. 

In other words, we have derived the expression for a non-ideal gas which obeys P plus A 

n square by V square into V minus n B is equal to n R T that is Van der Waals equation of 

state. Let us try one more.  Numerical problem or theoretical problem. The question is 

deriving an equation for energy, average energy for a simple system of a bare proton in a 

magnetic field Bz. So, we need to derive an equation for the energy. So, therefore, the 

problem that we need to solve is for obtaining an expression for U minus U 0. And, the 

other information which is important and given to us is they have defined, they have fixed 

the magnetic field at a constant magnetic field. So, therefore, we can safely put the 

magnetic field constant. In any case, when we write an expression for any thermodynamic 

quantity in terms of canonical partition function, we need to have the information about its 

energy levels. 

And, the energy levels or energy for a bare proton is given by E plus minus half is equal to 

minus plus half cross-γ Bz, where gamma which is magneto-gyric ratio is a product of 

nuclear factor gN and nuclear magneton βN. So, there the energy is given by both the terms 

with plus sign and with the minus sign representing two different energy levels.  Once you 

have these two different energy levels, then I can write Q is equal to go back to your 

definition Q is equal to summation j exponential minus βEj if the degeneracy is not there. 

So, you expand this and once you expand this, you include the energy corresponding to 

plus β term is also there and energy corresponding to minus β term is also there.  The 

internal energy is given by U minus U(0) is equal to minus del log Q by del β at constant 

Bz, which is also equal to minus 1 by Q del Q by del β at constant Bz. 
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We have the expression for Q. Once we have the expression for Q, then this Q can be used 

over here. Take the partial derivative of Q with respect to β at constant P Z, you work out 

yourself. Eventually, you are going to get this expression. This is what we were asked for 

that is to derive an expression for energy for simple system of bare proton in magnetic field 

Bz and it turns out that this energy expression is given in terms of this expression, where 

we need information about gamma Bz and temperature.  Once we have, then we can 

calculate the value of energy for a simple system of bare proton, which is in a fixed 

magnetic field Bz. 

So, in this lecture, we have calculated or derived some expressions, which were relevant to 

rotational contribution to partition function and also in general further applications of 

canonical partition function. Keep in mind that whenever you convert canonical partition 

function to molecular partition function, that molecular partition function can be a product 

of different contribution to the partition function. For example, of translational, rotational, 

vibrational and electron and when you have to derive expressions for different 

thermodynamic quantities, for example, in this case for internal energy, we should be able 

to write in terms of canonical partition function and then take appropriate derivatives to 

arrive at the desired equation. We will further solve more numerical problems and also 

discuss the vibrational contribution to partition function, but those things are we will 

discuss in the next lectures. Thank you very much. 


