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Further discussion on entropy of a monatomic gas - I 

 

Welcome back.  By now we have connected entropy with canonical partition function 

and also we have discussed how to recover molecular partition function from canonical 

partition function.  That means, now we have means of connecting entropy with 

molecular partition function when we consider concept of ensembles.  That means, after 

having described entropy in terms of canonical partition function, then we can further 

decide that depending upon whether the molecules are distinguishable or 

indistinguishable, how this equation can be further modified.  So today, we will further 

discuss more on entropy, but let us take first an easy example  that of a monatomic gas.  

So when we say about monatomic gas, it is understood that we are talking about perfect 

gases, we are talking about ideal situations. So therefore, in this discussion whenever 

required, we will use ideal gas equation.  So in the previous lecture, we have talked about 

the Sackur–Tetrode equation which is basically an expression for entropy of a monatomic 

gas and this Sackur–Tetrode equation which connects entropy with volume and the 

thermal wavelength or entropy with pressure, thermal wavelength, temperature of course, 

temperature is hidden in thermal wavelength.  
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These two forms of Sackur–Tetrode equation permit us to evaluate entropy under 

constant volume conditions, under constant pressure conditions or under constant 

temperature conditions.  So depending upon the situation, we can use this equation and 

we also last time discussed that if the molar mass is higher, then thermal wavelength is 

lower. If thermal wavelength is lower, then entropy is higher and that is what is captured 

in this comment that Sackur–Tetrode equation implies that the molar entropy of a perfect 

gas of high molar mass is greater than one of the low molar mass.  That means if low 

molar mass, λ  will be high, if λ  is high, then entropy will  be less.  Let us further now 

discuss about entropy.  Let us start now discussing the applications of the formulae that 

we have so far derived.  The first example that we will take is calculate standard molar 

entropy of a gaseous argon at 25 °C and the molar mass of argon is given over here, 

argon atom. 
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Now the things to notice in the given statement, you know, before we start attempting 

solving  a problem, it is first of all wise to look at the problem statement very carefully 

and  see what all information is given.  What do they want?  The question is calculate 

standard molar entropy.  Standard that means they want us to calculate the entropy under 

standard state conditions.  So standard state condition, what is a standard state condition?  

Standard state means substance should be pure, temperature can be any, but pressure 

should be one bar. Keep this definition of standard state in mind. 

Pressure should be one bar, substance should be pure and temperature can be any.  So 

therefore in the Secu-Tetrode equation, look at the symbols that are notations that  I have 

used over here.  𝑆𝑚
0 , m represents molar, this naught is used for standard state condition 

and the pressure also, we write P0.  What is the value of P0?  P0 is one bar.  That is what I 

was saying that when you try attempting solving a problem, first of all look at the 

problem statement. 

Try to understand what all the information is given.  Since they want us to calculate 

standard molar entropy, so automatically we will set the  pressure equal to one bar.  So in 

this formula of molar entropy, what we have?  The temperature is given 25 °C. So on 

absolute scale, we will write it as 298 Kelvin or to be very precise 298.15 Kelvin. P0 is 

given and λ which is β h square over 2 π m whole square root over h over 2 π m k T. 

Essentially you need the information on temperature and you need the  information on 

molar mass.  That is given 39.95 gram per mole.  Substitute here and remember I have 

already discussed here we are talking about one atom when you put m over here. 



So therefore, what you will be using the number 39.95 convert into kilogram that means 

multiplied by 10 raised to the power minus 3, and then divide by Avogadro constant.  So 

as we have discussed earlier that here you have to put mass of one particle.  After 

substituting all the constants or other values, you will get a thermal wavelength of 16 

picometer, 16 into 10 raised to the power minus 12 meter.  So now you have all the 

information to put into the formula. 

So 𝑆𝑚
0  is equal to R and since we are talking about molar N is equal to 1.  The minimal 5 

by 2 Boltzmann constant is 1.381 into 10 raised to the power minus 23 joules per Kelvin.  

Temperature is given 298.15 Kelvin and then pressure which is 1 bar and we have to use 

SI units here. 

 One bar is equal to 0.1 mega Pascal and then you convert that 0.1 mega Pascal into 

Newton per meter square, then one bar will turn out to be 10 raised to the power 5 

Newton per  meter square.  And then we have here the thermal wavelength which is 16 

πcometer which is 1 you convert into meter which is equal to 1.6 into 10 raised to the 

power minus 11 meter cube or 16.0 into 10 raised to the power minus 12 meter cube.  

After solving this we will get a molar entropy of 155 joules per Kelvin per mole.  So 

therefore, the standard molar entropy of gaseous argon at 25 °C is 155 joules per Kelvin 

per mole.  Thermal calculations we need to be careful about what value of P0 should be 

put.  We need to be careful about what value of molar mass to be put in what way that is 

you need to put for one particle. 

All right.  So we have obtained a molar entropy of 155 joules per Kelvin per mole from a 

thermal wavelength of 16 picometer.  Let us take a look at some of the comments.  Argon 

is 39.95 gram per mole.  Neon molar mass is less 20.18.  It is a lighter molecule.  Lower 

molar mass if lower molar mass then thermal wavelength will be higher.  If thermal 

wavelength is higher the entropy will be less.  That is a reciprocal relation.  So neon 

which has a molar mass of 20.18, it is a lighter molecule and has higher thermal  

wavelength. Therefore, standard molar entropy of neon will be smaller than argon and 

calculations suggest that it is 146.3.  Argon was 155. Neon is 146.3.  This is the effect of 

the molar mass.  Let us take one more case that is standard molar entropy of hydrogen 

and the comment  if you carefully look at the comment over here what is written in the 

comment. The translational contribution to the standard molar entropy translational 

contribution.  Why I did not talk about only translational contribution in case of neon or 

argon because  neon and argon which are atoms will have only translational degree of 

freedom will not have  rotational and vibrational degrees of freedom.  When it comes to 

hydrogen, it is a diatomic molecule. 

The other contributions can also come in.  So therefore, the translational contribution can 

be calculated by using Saku-Tetrode equation.  All right.  Here the molar mass is 2 and if 

it is molar mass is further less then thermal wavelength  will be further higher and molar 



entropy will be further less and you can see now it is  118.118 joules per kelvin per mole. 

Argon with a molar mass of 39.95 has a molar entropy of 155.   
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Neon with a molar mass of 20.18 has molar entropy of 146.3.  Hydrogen with a molar 

mass of 2 has a translational contribution to molar entropy as 118 joules  per kelvin per 

mole.  So you can clearly here look at that how the molar mass of the given species 

affects the  molar entropy.  Now let us further discuss about this Saku-Tetrode equation 

what other type of equations we can further develop from this.  So Saku-Tetrode 

equation, this is one form, S is equal to n r log exponential 5 by 2 volume n times n a λ  

cube and we all know what is λ  we do not need to elaborate now.  Now let us maintain 

isothermal conditions. 

Isothermal conditions mean constant temperature.  If temperature is constant, now let us 

look at in the Saku-Tetrode equation what happens if temperature is constant.  
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This exponential raised to the power 5 by 2 is a constant.  Number of moles is a constant. 

Avogadro constant is a constant.  And what about λ? λ you see here is h by 2 π m k T. If 

the temperature is constant and the molar mass is constant then λ is also constant.  That 

means under isothermal conditions if you want to apply this expression for any changes 

happening in the system then essentially the λ thermal wavelength is constant.  So 

therefore, everything other than volume that means all these parameters exponential 5 by 

2 n n a λ cube this is all constant and I can combine all these constants into a right.  So I 

write S is equal to n r log a times V. 

Now you consider a gas and let that gas expand under isothermal conditions.  Isothermal 

conditions.  If we are considering isothermal conditions I can use this formula.  Let us say 

expansion takes place from Vi to Vf then your delta S is Sf Sf minus Si.  What it will be?  

It will be n r log a Vf minus n r log a Vi 

Which now I can write as delta S is equal to n r log a Vf over a Vi is equal to n r  log V 

final over V initial.  We have an expression now to calculate change in entropy when a 

gas expands under isothermal  conditions and we have only used the statistical 

thermodynamics concepts over here.  So this slide basically recaptures again what I have 

just discussed is that under constant  temperature conditions S is equal to n r log a times 

V and then for any change where a  gas expands from V final to V initial we have this 

expression delta S is equal to n r log  V final over V initial.  Remember that once again I 

am saying that we have used simply the statistical thermodynamics  concepts over here.  

Does this result match with that obtained in classical thermodynamics discussion?  Let us 

look at that. 



Remember that the definition of dS is equal to dq reversible by d.  The subscript 

reversible that is specifically to be noticed.  All right if dS is equal to dq reversible by T. 
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then let us see what happens under constant temperature conditions.  I will use the first 

law of thermodynamics du is equal to dq plus dw.  If the temperature is constant then the 

change in internal energy is zero. We are so far talking about ideal situations, ideal gases.  

So constant temperature means this du is equal to zero right.  Let me write du is equal to 

zero under isothermal conditions.  So that means dq is equal to minus dw and if I invoke 

reversibility conditions then  is not this equal to minus minus p dv.  So what do I have 

now dq reversible is equal to plus p dv and since dq reversible is equal  to pv is equal to 

nRT then I can write this as p is equal to nRT by v dv. 

 I am interested in dq reversible by T. So dS then becomes dq reversible by T, dq 

reversible  is nRT dv by v and divided by T which is nR dv by v and if I now integrate 

from Vi  to Vf right.  So then delta S will be equal to nR log v final over v initial.  You 

apply the limits Vi and Vf over here then delta S will be equal to nR log Vf over Vi  and 

you are essentially getting the same result.  Let us take a look at the comment.  So now 

we have shown that this expression delta S is equal to nR log Vf over Vi which  by using 

the concepts of statistical thermodynamics we showed that at constant temperature this  is 

nR log Vf over Vi and just now we also by using the classical thermodynamics concepts. 

Again we showed that under isothermal conditions or under constant volume conditions 

delta  S is equal to nR log Vf over Vi. That is what is the comment over here that this is 

exactly the expression we obtained by using both classical thermodynamics and statistical 

thermodynamics.  
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The classical expression is in fact a consequence of the increase in the number of 

accessible  translational states when the volume of the container is increased. Look at this 

comment  very carefully. The classical expression is in fact a consequence of the increase 

in the  number of accessible translational states when the volume of the container is 

increased. 

 What it means is that you consider gas contained in a volume, certain volume in a 

container.  Now you let the gas expand. The volume is expanding that means your 

dimensions a, b, c or length of the container that is all going up, right.  

See slide time: 22:25 



Even if you consider one dimension  if you are expanding like this then the length of the 

container is increasing. What is the  effect of the change in length of the container on the 

number of accessible thermal this translational  states? That is what we need to consider. 

We will look at that.  Now delta S is equal to nR log Vf over Vi. Obviously as we have 

been discussing that  if Vf is greater than Vi, then the temperature of the container is 

greater than Vi. So, that  means if Vf is greater than Vi that means we are talking about 

expansion and remember  if we sort of you know for the sake of discussion if we restrict 

to one dimensional translational  motion then remember En was equal to n square h 

square over 8 m L square, right.  And if it is allowed in three dimension then you have 

En1, En2, En3 is equal to n1 square  h square over 8 m L1 square plus n2 square h square 

over 8 m L2 square and so on and  so on. I am not going into that details because that we 

have already covered. 

But what is  happening here is look at this scenario. A is corresponding to this is 

corresponding  to Vi and B is corresponding to Vf expansion. So, you are allowing the 

system to undergo  expansion. Expansion means you are increasing the value of L. So, if 

L square increases  the energy En decreases and that is what you see over here that this 

you see that the spacing  between the energy levels corresponding to different n that 

decreases. And that is the  comment written over here that as the width of a container is 

increased going from A to  B width is increased the energy levels become closer you can 

compare this versus this. This  system has the energy levels much closer to each other 

than this system and as a result  more thermally accessible states at a given temperature. 

So, given scenario this given  scenario this at a given temperature this will have more 

thermally accessible states.   
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Thermally accessible states and if there are more thermally accessible states if the then  

the molecules can distribute in different in larger number of thermally accessible states  

and therefore, there will be more disorder and therefore, there will be more entropy.  So, 

this is the statistical definition or interpretation explanation of why the entropy  of a gas 

increases when it undergoes expansion under isothermal condition from a initial  volume 

to final volume. 

Basically what we did was that we talked about what will be  the population of different 

states isothermally when the gas is allowed to expand.  We will discuss few more 

applications of Sécout-Tetrode equations. As I mentioned earlier that Sécout-Tetrode  

equation is very very important because it will allow you to calculate the entropy changes  

when the system undergoes change under constant volume conditions, under constant 

pressure  conditions or uder constant temperature conditions. So, we will discuss morein 

the next lecture.  Thank you very much.  Thank you.  Thank you. 

 


