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Solving numerical problems based on Internal energy and Entropy 

Let us continue our discussion on solving numerical problems based on internal energy and 

entropy.  Internal energy and entropy are directly connected to each other.  Go back to 

concepts of chemical thermodynamics where you remember that dS which is equal to dq 

by T allows you to connect under constant volume conditions dU is equal to TdS.  So, 

therefore, internal energy and entropy can be directly connected.  In the previous tutorial 

session, we talked about evaluating the molar entropy of N two-level systems and we were 

also asked to plot the resulting expression.  
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First let us discuss that. We have already shown the dependence of entropy upon 

temperature or β through this expression S by NK is equal to β E divided by one plus 

exponential β E then plus log one plus exponential minus β E. And when you plot this, 

look into the upper figures.  It is plotted as S by NK versus kT by epsilon and you see when 

the temperature is increasing, the value is starting from zero and eventually rising towards 



a final value of log two.  So this is how the entropy dependence upon temperature can be 

expressed. 

So definitely we can exactly find out the value of entropy when temperature is approaching 

zero and the second is when temperature is approaching infinity.  Now I want you to take 

a look at the statement of the question that is given to us.  Evaluate the molar entropy of N 

two level systems and plot the resulting expression, we have plotted.  What is the entropy 

when two states are equally thermally accessible?  So if we are considering only two states, 

two levels, then at what temperature the two-states are equally thermally accessible?  We 

have already discussed that when temperature approaches infinity.  Remember that when 

we talked about the fractional population of a system which has only two-states as the 

temperature approaches infinity, both the states are equally thermally accessible. 

We also derived a general conclusion at that time that whatever is the state under 

consideration, when temperature approaches infinity, all the states are equally thermally 

accessible.  But let us talk about what happens when temperature approaches zero.  When 

temperature approaches zero, then β over k T, β is equal to one over k T, then β approaches 

infinity, but here there is a denominator infinity also and here minus infinity that means 

this one over exponential infinity, this will become zero.  So log one, log one is also zero.  

This is zero because there is infinity in the denominator that means S approaches a value 

of zero. That is what you observe over here.  When temperature approaches zero, S 

approaches a value of zero.  Now the second condition, when the two states are equally 

thermally accessible that means we are talking about a temperature which is very very high 

approaching infinity.  Let us work on that.  When temperature approaches infinity, then β 

which is 1 over k T approaches a value  of zero. 

 So this factor, the first one, this becomes zero and this exponential zero, this becomes  one.  

So log one plus one, then you have two.  So when β approaches zero, this first term is zero 

and then log two.  S by n k is equal to log two that means S approaches a value of n k log 

two.  So therefore, such an expression, it allows us to express entropy as a function of 

temperature. We can talk very easily the situations when temperature approaches zero and 

the temperature approaches a very high value.  At the intermediate temperatures, one can 

use this expression and calculate the value of entropy.  Now let us talk about another case.  

Consider a system which has doubly degenerate ground state, non-degenerate first excited 

state at E1 and a doubly degenerate second excited state at E2. Derive expressions for its 

internal energy and entropy. 
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Let us try to understand this problem.  Consider a system which has a doubly degenerate 

ground state.  Let us write that.  There is a doubly degenerate ground state, a non-

degenerate first excited state.  Let us say this is a non-degenerate first excited state and the 

energy here is E1 and a doubly degenerate second excited state. 

 Let us say there is a second excited state which is doubly degenerate and this is at  E2.  

This is E0, E0 is equal to zero.  Derive expressions for its internal energy and entropy.  

Whether you want to derive expression for internal energy or you want to derive expression 

for entropy, we first need an expression for its partition function.  Let us write down an 

expression for its partition function. 

Diction function is summation j gj exponential minus β Ej.  Apply to this system q is equal 

to g0.  g0 degeneracy of the ground state is 2 plus g1 degeneracy of the first excited state is 

1 into exponential minus β E1.  And then we have degeneracy of the second excited state 

which is 2 exponential minus β E2.  This is the expression that I have for the molecular 

partition function. Once I have this expression for the partition function, now I can write 

an expression for internal energy.  Remember, u minus u0, this is the internal energy is 

equal to minus n by q 𝛿 q 𝛿 β at constant volume.   
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We already have an expression for q.  So therefore, it becomes easier for us now to write 

an expression for internal energy.  u minus u0 is equal to minus n by q. q is 2 plus 

exponential minus β E1 plus 2 exponential minus β E2 into derivative of this with respect 

to β.  This is going to be exponential minus β E1 into minus E1 plus 2 times exponential 

minus β E2 into minus E2.  So what I have now is u minus u0 is equal to, I can consume all 

the negatives with this negative and turn it into positive.  So what I have is n and then I 

have E1 exponential minus β E1 plus 2 E2 exponential minus βE2.  In the denominator, I 

have 2 plus exponential minus β E1 plus 2 exponential minus βE2. 

This is the expression for internal energy.  You can calculate internal energy for this system 

as a function of temperature.  Carefully note that in the previous example when we 

considered only two-level systems q was different.  Here we are taking n systems where 

the ground state is doubly degenerate, the first excited state is non-degenerate, second 

excited state is doubly degenerate, the q is getting modified and as a result of this 

modification, your expressions for the internal energy are also getting modified.  Therefore, 

the temperature dependence of internal energy on temperature is going to be this complex 

function. 

You can always talk about temperature approaching 0 and temperature approaching infinity 

as extreme cases.  Now that we have the expression for internal energy, you can also now 

derive an expression for heat capacity at constant volume from this expression because you 

remember that Cv is 𝛿 u by 𝛿 t at constant volume or is equal to minus 1 over kT square 

into 𝛿 U by 𝛿 β at constant volume and you can have an expression of heat capacity as a 

function of β or as a function of temperature, which is also going to be relatively a complex 

function.  But the question that we are supposed to solve is to derive expressions for internal 



energy and entropy.  We have an expression for internal energy. 

Okay.  What we derived just now is U minus U (0) is equal to what I had there was let us 

take a look back what we had.  We had this n times E1 exponential this term and over q.  

Let us take it to the next one.  This is equal to n then we have E1 exponential minus β E1 

plus E2 exponential minus β E2 and then in the denominator we had the molecular partition 

function 2 plus exponential minus β E1 plus 2 exponential minus β E2. 

This is U minus U(0).  u minus u0 by T will be equal to n E1 exponential minus β E1 plus 

E2 exponential minus β E2 divided by T into 2 plus exponential minus β E1 plus 2 

exponential minus β E2 and we can use the usual transformations that β is equal to 1 over 

kT that means 1 over T is equal to k times β.  I can use that.  So, what I have is now u 

minus u0 by T is equal to 1 over T I am writing k β.  So, I have n I have k into β inside I 

have E1 exponential minus β E1 plus E2 exponential minus β E2 and here I have is 2 plus 

exponential minus β E1 plus 2 into exponential minus β E2.  Keep a factor of 2 over here 

which we missed. 

So, I have this.  So, we have U minus U (0) by T.  So, S is equal to U minus U (0)  by T 

which is n k β inside I have E1 exponential minus β E1 plus 2 E2 exponential minus β E2 

divided by 2 plus exponential minus β E1 plus 2 exponential minus 2 E2 plus n k log q n k 

log q q was 2 plus exponential minus β E1 plus 2 exponential minus β E2. 
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NK is common therefore, the resulting expression is S by NK is equal to β into E1 

exponential minus β E1 plus 2E2 exponential minus β E2 divided by the partition function 

that is 2 plus exponential minus β E1 plus 2 into exponential minus β E2 plus log 2 plus 

exponential minus β E1 plus twice exponential minus β E2.  This was the expression to be 



derived.  Look at the nature of the expression dependence of entropy on temperature. It is 

a complex function, but if you know the values of temperature, if you know the values of 

the first state energy state and the second excited energy state these numbers if you know 

then you can definitely calculate entropy at a given temperature.  But remember that you 

can always calculate these values at extremes of temperature for the sake of simplicity.  

What I mean is let us discuss what happens when temperature approaches a value of 0.  

When the temperature approaches a value of 0 then β which is equal to 1 over k T when 

the temperature approaches 0 this will approach a value of infinity.  So, therefore, what 

you have is here in the denominator you have infinity. So first term is 0 and the second 

term because it is infinity exponential minus infinity that means 1 over exponential infinity 

this becomes 0 this becomes 0.  So therefore, what you have is S over NK is actually 

approaching a value of log 2.  Now the second one is when temperature approaches a value 

of infinity then β is equal to 1 over k T it will approach a value of 0.  That means what we 

have now we have this β is equal to 0.  So that will set everything equal to 0No contribution 

from first term. But second term you will have 1 from here and 2 from here because 

exponential minus 0 or exponential 0 that is 1.  
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So that means what we have now S upon NK will approach a value of log 2 plus 1 3 3 plus 

2 5 points to be noted here.  The third law of thermodynamics says that every substance 

has a positive entropy which may become 0 at absolute 0 and it does become 0 for perfectly 

crystalline substances.  But it did not say that all the substances have to have a value of 

entropy equal to 0.  Here is one such case which you come across that when the temperature 



is approaching 0 your entropy is approaching a value of NK log 2 and when temperature 

is approaching infinity then S is approaching a limiting value of NK log 5. 

So when there is some amount of entropy even when the temperature is approaching 0 that 

means even at 0 there is some sort of disorder.  So at absolute 0 that some sort of disorder 

can come from configurational disorder and that configurational disorder can give rise to 

some value of entropy even at absolute 0.  The concept of entropy at absolute 0 which is 

called residual entropy we will discuss at a later stage.  In today's lecture what we have 

done is we have combined the connection of internal energy with molecular partition 

function and the connection of entropy with internal energy and molecular partition 

function.  So this discussion allowed us to derive expressions for the variation of internal 

energy with temperature and variation of entropy with temperature. I hope that the 

numerical problems discussed in these two sessions have enabled you to appreciate the 

relationship of internal energy with molecular partition function and the relationship of 

entropy with molecular partition function in a more simpler and clearer manner.  Thank 

you very much.  Thank you. 


