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Solving numerical problems based on Internal energy and Entropy 

Welcome back to the next lecture on Fundamentals of Statistical Thermodynamics.  So far 

we have developed equations which connect internal energy with molecular partition 

function and entropy with molecular partition function. Both these thermodynamic 

quantities internal energy and entropy are very important in thermodynamics. Internal 

energy is the total energy of the system added up in all the forms and entropy is a measure 

of degree of disorder or ordered state of a system. Why both these thermodynamic 

quantities are important? Because work or heat which both are equivalent form of energy 

when these are done on the system or these are done by the system these affect the internal 

energy. Work is done at the cost of internal energy. 

Similarly entropy, if there is a change in entropy that can be connected with the creation  

of more order or more disorder.  Going back to the second law of thermodynamics where 

we discussed that the change in entropy of an isolated system is positive for a spontaneous 

process.  When I said I meant in change in entropy of the system plus change in entropy of 

the surroundings has to be positive if the process is to be spontaneous.  Therefore, 

connecting internal energy with molecular partition function and entropy with molecular 

partition function is very important and it tells us how to determine these values by using 

spectroscopy.  

Today we will use the derived equations to further discuss their applications.  Let us take 

up the first example.  In one of the previous lectures, we talked about heat capacity.  So 

again revisiting heat capacity is a very important thermodynamic quantity because it 

connects one thermodynamic signature or one thermodynamic quantity at one temperature 

to the same thermodynamic quantity at another temperature.  So therefore it is a connector 

for the thermodynamic quantities at different temperatures. 

Not only that a literal definition of heat capacity is the amount of heat required to change 

the temperature of a system by one degree, one kelvin.  That means it also directly talks 

about the strength of the system. If we impose constant volume constraints then the 

definition that we need to use is Cv is equal to 𝛿 U by 𝛿 t at constant volume.  And in the 

previous, one of the previous lectures we have shown that u is equal to U (0) plus 3 N by 



2 β.  We also then derived this expression in terms of the Boltzmann constant, temperature, 

etcetera, and then we equated it equal to 3 by 2 nRT. 
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This is for the translational motion of a particle of a molecule or of a molecule.  I am talking 

about a monatomic type of gas in three dimensions.  Substituting the numbers we got Cv 

equal to 12.5 joules per kelvin per mole.  Let us highlight some of the comments. 

This value agrees almost exactly with the experimental data on monatomic gases at normal  

pressures.  This is theoretical prediction.  Second is experimental data and we have earlier 

talked about how to determine heat capacity experimentally. We need calorie meters. 

Under constant-volume conditions, bomb calorie meter. 

Under constant pressure conditions, the other type of calorie meters which can work under 

constant pressure conditions.  Second point that we need to be careful in this case about is 

that the value that we got 12.5 joules per kelvin per mole, it applies only to monatomic gas, 

monatomic perfect gas.  And for more complex molecules, means for diatomic molecule, 

for triatomic molecules, there are other modes of motion which we need to consider.  

electronic, only translational degree of freedom is there. 

Electronic can also be there, but that can be discussed later.  But when you go to diatomic 

and we go to triatomic and more complex molecules, then not only translational degree of 

freedom is there, there is rotational degree of freedom, there is vibrational degree of 

freedom in addition to electronic contributions.  So, this is a very simple example.  Now, 

let us go to some other type of questions.  The question is to show that heat capacity of N 

two level systems, that is Cv is given by the following expression. 
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Cv is equal to Nk into βE square exponential β Edivided by 1 plus exponential βEsquare 

and we know β is equal to 1 by kT.  So, that means the expression that we are going to 

derive can allow us to calculate the value of Cv as a function of temperature and from the 

knowledge of energy separation.  The given system is a two-level system and let us say 

separation between the ground state and the upper or the excited state is E. Alright.  Cv 

basically by definition Cv is equal to 𝛿U𝛿T at constant volume. 

Now, either we can differentiate with respect to temperature and the result can also be  

expressed in terms of β.  β and temperature anyway are connected to each other and 

sometimes instead of differentiating with respect to temperature, it becomes easier to 

differentiate with respect to β.  So, you see d by dT, I can write d by dT as d β by dT into 

d by d β.  Really that is allowed and since β is equal to 1 over kT, therefore d β over dT is 

going to be minus 1 over kT square.  Therefore in place of d β by dT, I can write minus 1 

over kT square and then I can write differentiation with respect to β. 

 Why this kind of transformations?  Why this kind of derivatives?  Because sometimes it 

becomes easier if we work in terms of d by dβ.  You can work in terms of d by dT and then 

convert into β. Choice is yours.  But as I said that sometimes if we choose an appropriate 

derivative, it is easier to get results.  Now let us come back to the problem that we need to 

solve. We have these two levels, ground state and upper state.  The first step will be to 

write partition function which will be 1 plus exponential minus β.  For ground state 1, for 

upper state the contribution is exponential minus β.  Cv is a derivative of internal energy.  

So therefore, first of all let us talk about internal energy. 

 U minus U (0) is equal to minus N by q  𝛿 q  𝛿  β at constant volume.  q is 1 plus exponential 



minus β E. So therefore, let us now work on this.  Minus N by q minus N by q . q is 1 plus 

exponential minus βE and into derivative of q with  respect to β which is exponential minus 

β E and into it is going to be minus E. 

So what I have now is U minus U (0) is equal to minus minus is plus.  So it is nE exponential 

minus β E divided by 1 plus exponential minus β E.  

 I can further simplify it.  I can multiply numerator and denominator with exponential plus 

βE.  Exponential plus β E. Why?  Because if I multiply by exponential plus β E, this upper 

term becomes 1.  So I have N E into 1 that I am not writing divided by exponential βE plus 

1.  Just to make the things little more simpler.  We have now the expression for internal 

energy and if we take its derivative with respect  to temperature or with respect to β, then 

we will get the heat capacity.  What we have is now U minus U (0) is equal to nE over 

exponential βE plus 1.  
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That is what we have.  Cv is equal to 𝛿U 𝛿T at constant volume and we just showed that it 

is equal to minus 1 over K T square into I can write 𝛿 U 𝛿 β at constant volume.  We just 

showed that.  Now let us act upon this.  So what we have?  Cv is equal to minus 1 over K 

T sq uare into let us take the derivative of internal energy with respect to β.  N E is anyway 

there constant into minus 1 over exponential β E plus 1 square into exponential β E into E. 

 Let's further simplify it.  So Cv is equal to what do I have?  Minus minus becomes plus.  

So I have N then I have E square I have exponential β E over K T square into exponential 

βE plus 1 whole square.  I have combined the terms and I have N into E square into 



exponential β E divided by KT square exponential β E plus 1. We can now further simplify 

it by noting that β is equal to 1 over K T.  Now I can write this as β over T is equal to 1 

over KT square. 

So I want to simplify my result.  I have Cv is equal to N instead of 1 by KT square let me 

write β by T into E square exponential β E divided by exponential β plus 1 square.  Now 

remember that I can write another term from here 1 over K T 1 over K T is equal to β which 

means 1 over T is equal to K tmes β.  I can use it over here 1 over T is equal to K times β 

that means what I have now is once I substitute over here Cv is equal to 1 over T is K times 

β so I have N K and another β term will come β E square let me combine all this β E square 

into exponential β E by exponential β E plus 1 square.  So I have this result Cv is equal to 

Nk into β E  whole square exponential β E divided by exponential β E plus 1 this is what 

we were asked to show. 

Remember that β is equal to 1 over K T.  Now we can briefly talk about effect of 

temperature on this result.  We will use this expression that we derived and let us see what 

happens when temperature approaches 0.  When the temperature approaches 0 then β is 

equal to 1 over K T that means β will approach a value of infinity and you see you have 

infinity in the denominator also.  So Cv will approach a value of 0. 

You have infinity in the denominator and when T approaches infinity then β is 1 over  K T 

that means β approaches a value of 0.  Then you see here you have 0 then also that means 

C V will approach a very small value and if you work out actually take a maximum also it 

will show a maxima too.  So in general what I want to say here is that depending upon the 

system given to you.  For example, here we were talking about N2 level systems and we 

discussed that each level is a non-degenerate and therefore we wrote an expression for the 

molecular partition function for that and then we developed further equations.  This is 

showing that the heat capacity of N2 level systems is given by some kind of expression 

which permits us to calculate Cv as a function of temperature from the knowledge of energy 

levels or energy separation. 

hope this derivation is clear.  Now let us go to another type of question.  We have a similar 

system now.  N2 level systems evaluate the molar entropy of N2 level systems and then plot 

the resulting expression.   
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What is the entropy when two states are equally thermally accessible?  In the previous 

question we talked about internal energy and then we talked about connection of internal 

energy with partition function and eventually an expression for the heat capacity.  Now we 

will be talking about entropy and entropy is connected to molecular partition function 

through this equation. 

S is equal to U minus U (0) by T plus Nk log q and remember that U minus U (0) is also 

connected to the molecular partition function.  U minus U (0) for the same system which 

is given to us N 2 level systems, we have just discussed that U minus U (0) is equal to, we 

derive the expression which is N times E over exponential β E plus 1.  This is the expression 

that we derived in the previous lecture.  I can take you back to the previous lecture and this 

is where look at this expression  that U minus U (0)  we have derived this expression is 

equal to N times E divided by exponential β E  plus 1. 

Let us make use of this now.  So that means U minus U (0) by T will be equal to what?  

Which will be nE over T times exponential β E plus 1 and since we decided that instead of 

T let us talk in terms of β.  That means β is equal to 1 over k T or we use 1 over T is equal 

to k times β.  We will use that that means U minus U (0) by T is equal to 1 over T is k β.  

So Nkβ I am writing instead of 1 over T E over exponential βE plus 1. 

This is U minus U (0) by T.  Now we can write the expression for entropy.  S is equal to U 

minus U (0) by T is N k β E divided by exponential β E plus 1 plus Nk log q plus Nk log q 

q is what?  It is a two-level system 1 plus exponential minus β E.  
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Check carefully what you have is S is equal to N k into β E divided by exponential β E plus 

1 that is U minus U (0) by T plus Nk log q. Nk is common.  So therefore I can take it on 

the left-hand side and then express in terms of S by Nk.  Once we do that what we have is 

the following expression.  S by Nk is equal to β E over 1 plus exponential β E plus log 1 

plus exponential minus β E. That is what I was saying that this Nk and Nk is common and 

you can take it on the other side and eventually the expression that you get is S upon Nk is 

equal to β E over 1 plus exponential β E plus log into 1 plus exponential minus β E.   

We have now entropy as a function of temperature. It is not a linear or very simple function.  

You see β 1 over T is appearing here, 1 over T is appearing here, 1 over T is appearing 

here.  So, therefore we can easily talk about in the extreme limits that is when temperature 

approaches 0 or when temperature approaches infinity.  But remember that the expression 

that we have got here is for N2 level systems, a ground state and an excited state which is 

separated by energy E.  We have now connected the entropy of such a system with 

temperature energy separation by this expression.  We need to further discuss the variation 

of entropy with temperature in this case in the limits of T approaching 0 and T approaching 

infinity, but that we will do in the next lecture.  Thank you very much.  


