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Obtaining expression for beta  

  

  Let us now talk about those constants, you know, α and β which we used in Lagrange's 

method of undetermined multipliers. Earlier we have talked about α in terms of exponential 

α in one of the lectures and today we are going to express β in terms of temperature. We 

have been discussing that β is equal to 1 over k T, but today we will show, we will prove 

that β is equal to 1 over k T. We will need to bring in a discussion on internal energy to 

derive that. Let us consider only the particle or molecule is able to move  or free to move 

only in three dimensions, that is translational partition function.  We are not allowing 

rotation vibration that means we are talking the case of atoms.  

Atoms will only have translational degrees of freedom, electronic will be there, but let us 

not consider electronic at this moment. Recall the discussion when you were learning the 

equipartition theorem.  A perfect gas, a perfect monatomic gas, is considered only 

translational. The equipartition expression for the internal energy of a perfect gas, you 

remember that this was equal to 3 by 2 nRT, 1/2 nRT in one dimension, and 3 by 2 nRT in 

three dimensions.  

  So we are going to use the result of the equi-partition theorem and by using the concepts 

of statistical thermodynamics, I will derive that U minus U(0) is equal to 3 n by 2 β.   
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I am going to derive that where n is the number of molecules and β is what we are looking 

for. We want to find out an expression for β. So once I have derived this, what I will then 

do is I will compare these two and then equate 3 n by 2β equal to 3 by 2 nRT, and then I 

will obtain an expression for β.   

See slide time: 8:07  

  

  

  



  

We have already talked about internal energy.U is equal to U(0)  minus n by q ∂ q by ∂ β 

constant volume. We are talking about translational contribution. So, therefore, the 

translational partition function that we know is equal to v upon λ q. We are going to use 

that and we are also going to use an expression for λ which is equal to β h square over 2π 

m square. We are going to use both these expressions.  

So U minus U (0) is equal to minus n by q minus n by q. By q is v into λ q. This is q into ∂ 

q by ∂ β at constant volume.  That means ∂ v upon λ q ∂ β at constant volume. So what I 

am going to get  from here now? This is equal to minus n λ q divided by v and constant 

volume means v can come out into volume into ∂ ∂ β of 1 by λ q at constant volume. This 

is the expression now we are looking at. Let us work on this now. So that means U minus 

U (0) is equal to volume and volume can cancel out. So we have minus n λ q. This is λ raise 

to the power minus 3.  

So derivative is minus 3 over λ 4 into ∂ λ ∂ β at constant volume. So what are we getting 

now? u minus U (0)  is equal to 3 n divided by λ, λ q by λ 4 into ∂ λ by ∂ β at constant 

volume. Let us now  act on this. This is going to be 1 by 2 into β h square over 2πm minus 

1 by 2 and another term that will come is h square over 2 π m.  

Fine. So I used this definition of λ and I took the derivative of λ with respect to 

β. See slide time: 10:54  

  

  



  

  

 So I have this expression U minus U (0) is equal to 3 n by λ half β h square 2πm minus 

raise to the power minus 1 by 2 and into I have h square over 2  π m. Now I need to further 

simplify this expression. An easy way to simplify is you multiply by β and divide by β. No 

harm done. Now you recognize that these two are the same terms. So what I have now? My 

U minus U (0) is equal to 3 n by 2 β. I am combining this β over here into 1 by λ and this 

product is nothing but λ. It is β h square over 2 π m square root into λ.  So therefore, I get 

this expression.  
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U is equal to U (0) plus 3 n by 2 β. What we have done is we have used the equipartition 

theorem and internal energy is 3 by 2 n r t and then exclusively we use the translational 

contribution and we arrived at an expression that U Minus U (0) or U is equal to U (0) plus 

3 n by 2 β. Let us proceed further. So we derived 3 n R t U is equal to U (0) plus 3 n by 2 

β and we know that u is equal to U (0)  plus 3 by 2n r t. This is from the equipartition 

theorem.  

Now if you compare these two, this and this are equal and that is what is equated over 

here. 3 by 2 n r t is equal to 3 n by 2 β.  So, let us further work on this. You have 3 by 2 n 

r t. This is equal to 3  

by 2. Instead of n, I can write a number of moles into the Avogadro constant that is equal 

to N, the number of molecules divided by 2 β. So, this is the equation.  Your 3 by 2, 3 by 

2, n, n they cancel and β is equal to NA Avogadro constant divided by R into 1 by T. 



Remember that gas constant R is equal to k times NA where NA is Avogadro constant, k is 

Boltzmann constant. Therefore, NA upon R is equal to 1 upon k.  

So, β is equal to then 1 over k T. We are using this R is equal to k times NA. So, we have 

the expression. So, β is equal to 1 by 2 n r t. So, β equal to 1 over k T. This is an expression 

that we have been using earlier, but now we have shown by using the translational partition 

function and equipartition theorem result that β is equal to 1. So, this completes our 

discussion on the undetermined multipliers. You remember that we wanted to put one of 

the terms equal to 0. The term which was actually not independent, but we made 

independent in d log w that term. So,  that you know we can set that equal to 0 for a certain 

value of α and for a certain value of β which were actually undetermined multipliers.  

 Exponential α or α we have discussed earlier and β we prove here that β is equal to 1 over 

k T.  And as I have repeatedly said that sometimes you know people work in terms of β, 

sometimes people work in terms of just temperature. So, therefore, do not get confused. All 

right, let us move forward. Once we have the knowledge of internal energy, we can 

calculate constant volume heat capacity.  

Heat capacity is a very important thermodynamic quantity because it allows the 

determination of temperature-dependent thermodynamic quantities. For example, if I know 

the enthalpy change for a reaction at one temperature, I can calculate the change in enthalpy 

at another temperature if I have the knowledge of heat capacity. We can use the Kirchhoff 

law Any thermodynamic quantity if you determine at one temperature and if you want to 

connect with the same or if you want to calculate the same thermodynamic quantity at 

another temperature, the connector is heat capacity. Therefore, heat capacity is a very 

important thermodynamic quantity.  

Usually, you talk about heat capacities under two constraints. One is constant volume and 

other is constant pressure. When you keep constant volume, we use the symbol Cv and that 

definition, the mathematical definition of Cv is ∂ u by ∂ t at constant volume. U, we have 

just derived an expression that U is equal to U (0) plus 3N by 2 β. Now, let us see what is 

this 3N by 2 β.  

3n,  n is N times Avogadro constant and divided by 2 and β is equal to 3n by 2 β. Now, let 

us write, let us see what is this 3n by 2 β. 3n, n is N times Avogadro constant and divided 

by 2 and β is 1 over K T. Now, let us see what is this 3n by 2 β.  So, that is what is being 

done over here that instead of n, I am writing n times NA and for β, you are writing K T.  

And then, the second that I am using R, gas constant is equal to K times NA. So, K times 

NA becomes R. So, it basically becomes R times NA.  So, it becomes 3 by 2nRT. That is 

what was the result from equipartition theorem that U is equal to U (0) plus 3 by 2 nRT. 

Now, you can take the derivative. Cv is equal to ∂U by ∂t at constant volume. This is a 

constant volume. This is a constant volume.  So, its derivative is equal to 0, and at constant 



volume, derivative with respect to temperature is simply going to be 3 by 2 n R. Remember 

that this is the actual heat capacity at constant volume for a given size of the system.  

You can always express these thermodynamic quantities in terms of molar properties. That 

is, let us say I write here Cv, I take n on the other side is equal to 3 by 2 R, and per mole, 

Cvm, molar heat capacity is equal to 3 by 2 R. We should always look at whether we are 

talking about C v or we are talking about Cv m. Cv, heat capacity at constant volume, it 

depends upon the size of the system, how many grams, how many moles because it involves 

n. When you talk about the molar property, that does not depend upon the size because you 

are calculating or determining heat capacity at constant volume for 1 mole of a substance.  

Therefore, do not get confused when you come across the terms C v and Cvm. Since we are 

talking about heat capacity over here and in future also we are going to talk more about 

heat capacity, it makes a sense here to discuss how to experimentally measure heat capacity. 

If you look into this definition, Cv is equal to ∂U by ∂T at constant volume. In fact, I can 

introduce right here, although we will solve the numerical problems later on that, Cp, heat 

capacity at constant pressure is ∂H by ∂T at constant pressure. So, we talk about constant 

pressure constraint, we talk about constant volume constraint and we discussed that 

experimental measurements of Cv requires the measurements of change in internal energy 

that means a bomb calorimeter will be useful.  

 And if experimentally I were to measure C p, then I require a calorimeter which can work 

under constant pressure conditions. A literal meaning of Cv and Cp, let us try to examine. 

Cv or Cp, both ∂H, ∂U, remember that q at constant volume is equal to ∂U and q at constant 

pressure is equal to ∂H, this is from your previous knowledge. So, both ∂U or ∂H if we are 

talking about infinitesimally small quantities, then I will write dq at constant volume is 

equal to dU and dq at constant pressure is equal to dH. So, whether we are talking about 

dU or ∂U or we are talking about dH or ∂H, we are essentially talking about the heats.  
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 In one case it is constant volume and in the other case it is constant pressure. So, 

experimental measurements of heat capacities  require the amount of heat required to 

change the temperature by 1 Kelvin either under constant  volume conditions, if we are 

talking about C v or under constant pressure conditions,  if we are talking about constant 

pressure. By applying the concepts of statistical thermodynamics,  we connected internal 

energy with partition function. So, we connected internal energy and from that we came up 

with this kind of expression that is U is equal to U 0 plus 3n by 2 β and that partition 

function was expressed in terms of degeneracies and energy levels. So, that means you can 

also get the information on Cp and Cv from the  respective spectroscopic data because when 

you are talking about an atom, a monatomic  gas for example, there here if you look into 

the question statement, it talked about monatomic  gas.  

That means you are only talking about translational degree of freedom. A monatomic  

system, an atom cannot have vibrational or rotational degree of freedom. You also know 

from your previous knowledge that the value of Cp and Cv will be temperature dependent 

because the different contributions set in at different temperatures. Here we are only  

talking about monatomic gas. So, we are only including the translational contribution.  

So, Cv is equal to 3 by 2 nR and Cvm is equal to 3 by 2 R and as I just mentioned, Cp and Cv 

are very important thermodynamic quantities because they are connectors. So,  they are the 

components of thermodynamic property at one temperature to thermodynamic property  at 

another temperature and also if we are going through the literal meaning, the amount  of 

heat required to raise the temperature by 1 Kelvin. The amount of heat required to  raise 

the temperature by 1 Kelvin is going to also depend upon how strong the system  is. What 

is the type of bonding which keeps different molecules together in the material?  Right 



now, we are not talking about beyond independent molecules. We will talk about solids 

and liquids later on, but I am just trying to give you a literal meaning of Cp and Cv.  

Since it is the amount of heat required to raise the temperature by 1 Kelvin, it also depends 

upon how strong the system is. Here we have discussed Cv and when we derive an 

expression between partition function and enthalpy, then we will talk about Cp also. 

Remember that Cp and Cv are also connected with each other. Cp minus Cv is equal nR that 

is for the ideal gases whereas, for the nonideal gases, you remember from the concepts of 

chemical thermodynamics, if the systems are interacting, there may be other terms in it.  

The take home lesson from this lecture is that by using the result of equipartition theorem 

and considering the translational partition function that is for a system which is free to 

move only in three dimensions having translational degree of freedom, we could establish 

that β is equal to 1 over k T.  

With this knowledge, now in the next lectures, we will start connecting partition function 

with other thermodynamic quantities and provide an interpretation to those thermodynamic 

quantities. Thank you very much.  Thank you.  


