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Hello everyone. Last lecture, we discussed the liquid drop model, where we derived an
expression for the mass of a nucleus using the phenomenon of a liquid drop and
considering the Coulomb energy and the asymmetry between neutrons and protons.
Using this semi empirical mass formula, we also discussed that it can predict the masses
of nuclei quite accurately. Today, I will discuss the other applications of liquid drop
model.

One of the most important applications of liquid drop model is to predict the energetics of
beta decay in an isobaric chain. We know that β- decay occurs in an isobaric chain, and in
this process, the mass atomic number is increased by 1, while in β+ decay, the atomic
number decreases by 1.

Now, let us try to calculate the Q for beta decay, and then we will see the systematics of
the Q beta decay. So for beta decay, let us calculate, we can in fact write the mass of a
nucleus in terms of the coefficients of Z and Z2. So the mass of a nucleus or an atom
M(Z, A) can be written as mass of Z protons, mass of (A – Z) neutrons minus the
binding energy term. So, this we have already seen that there is the semi empirical mass
formula.



And now let us try to rearrange these terms in terms of, we will try to get this formula in
terms of Z independent term, Z dependent and Z2 dependent terms from this above form.
So you can write this as,
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So now let us try to rearrange the terms which are independent of Z, so that will be AMN
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So we have actually tried to rearrange this formula in terms of coefficients of A, Z and

. That is the purpose of rearranging this mass formula and then you can write in terms𝑍2

of . These are the terms and you can rearrange them so that youα𝐴 + β𝑍 + γ𝑍2±δ
know this equation looks familiar to you in terms of the coefficients of Z.

Now this α, β and γ actually are called the local constants because they are constant for
that particular isobaric chain, they depend upon the mass term. And if you want to find
out the most stable isobar in this isobaric chain, then you can differentiate this formula
with respect to Z and so from here you get
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then you can find out the Q beta for the particular isobaric chain. So that we will discuss
in the next slide.



Now let us discuss the isobaric chains for the particular mass number wherein the beta
plus and beta minus decay is going to take place.

So we just discussed that the mass can be written in terms of and theα𝐴 + β𝑍 + γ𝑍2±δ
can be replaced by . So I have put hereβ =− 2γ𝑍
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Now as we discussed that for the minimum mass, the nucleus is most stable. So we can
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So now let us see for odd A isobaric chain where 0. For the moment we will forgetδ =
about term because for odd A is equal to 0. So let us try to find out the massδ δ
difference M(Z,A)-M( equal to, so you subtract from here it will be𝑍

0
, 𝐴)

𝑀 𝑍, 𝐴( ) − 𝑀 𝑍
0
, 𝐴( ) = α𝐴 − 2γ𝑍

0
𝑍 + γ𝑍2 − α𝐴 + γ𝑍

0
2

So you see here will cancel out and it will become you see here is out what weα𝐴 γ
have is

𝑀 𝑍, 𝐴( ) − 𝑀 𝑍
0
, 𝐴( ) = γ[𝑍2 + 𝑍

0
2 − 2γ𝑍

0
𝑍]

∆𝑀 = γ(𝑍 − 𝑍
0
)2

Now you see here the the mass difference between any isobar and the most stable∆𝑀
isobar follows a parabolic relationship. So if you plot this then we get versus Z as a∆𝑀
parabola where minimum corresponds to . Now this is nothing but Qβ for isobaric𝑍

0
∆𝑀

chains. But now you can see here that this is what we mean by the mass parabola. The
masses of the isobars of a beta decay chain fall on a parabola.

Now you see here as the Z is increasing from left to right you will see that the up to 𝑍
0

the lighter Z values will undergo β-. The heavier Z values will undergo β+. So
irrespective of where you produce for example if you produce a fission fragment it will
be highly neutron rich so it will undergo beta minus decay to ultimately lead to stability.
If you produce a highly neutron deficient nucleus it will undergo beta plus decay or



electron capture and come to the rest at Z stable. So this is what we mean by the mass
parabola and using this formula we can find out the systematics of beta decay.

Let us now see for an odd A isobaric chain how we can derive the Qβ. So this is a typical
example of a isobaric chain for odd A. You have one stable isobar shown in black and the
ones on the left hand side are undergoing beta minus decay and the ones on the right hand
side undergoing beta plus decay to reach the stability. And so this can be shown as a mass
parabola this is this is ΔM or Qβ. Now let us try to derive expression for the Qβ from𝑍

0

this graph.

So we write
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So this is what is the ΔM value for adjacent isobars that means you are now trying to find
out the Qβ for a β- decay. So it will get cancelled out. So what we have is,

+∆𝑀 =− 2γ𝑍
0
𝑍 +  γ𝑍2 2γ𝑍

0
𝑍 + 2γ𝑍0 − 𝑍2 − γ − 2γ𝑍

For now we can find out equal to so it will be cancelling out here you see here∆𝑀

∆𝑀 = 2γ𝑍
0

− 2γ𝑍 −  γ = 2γ(𝑍
0

− 𝑍 − 1
2 )

this is the relationship for the Qβ- so we showed Qβ- because we are going from Z to Z +1.

𝑄
β−

= 2γ(𝑍
0

− 𝑍 − 1
2 )

the same exercise for will give𝑄
β+

𝑄
β+

= 𝑀 𝑍, 𝐴( ) − 𝑀 𝑍 − 1, 𝐴( ) = 2γ(𝑍 − 𝑍
0

− 1
2 )

So using these expressions you can find out the using the local constant and . So𝑄
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what essentially you need is, two Q beta values along this decay in this parabola if you
know the two Q beta values then you can find out the local constants and and𝑍
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thereby the Q beta value of any other isobaric chains. So this is the application of liquid
drop model.



So let us now discuss the Q beta systematics for even A isobaric chain and an example of
that is given here that is this iron-64 decaying into cobalt-64 decaying into nickel-64 by
beta minus and then we have from germanium-64 to gallium-4 beta plus to zinc-64 and
as you can see here there are two stable isobars in this particular isobaric chain that is
very common for the even A isobaric chains. So we have already discussed for the odd A

isobaric chains, that is, the for beta decay will be (Z- that we have seen for∆𝑀 γ 𝑍
0

 )2 

the case of odd A isobaric chain.

Now in the case of even A isobaric chain there can be two situations that is we can have
beta decay from odd-odd nucleus to even-even nucleus and if this happens then there will
be a term 2δ for odd-odd to even-even beta decay and it can have even-even to odd-odd
then δ the term will be - 2δ so it will be

∆𝑀 = γ(𝑍 − 𝑍
0
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for odd-odd to even-even. So what essentially you have is that you have if you see the
mass parabola for even A isobars then you will have two parabola one for the even-even
and one for odd-odd nuclei and so the beta decay will take place from even-even to
odd-odd to even -even to odd-odd and similarly here you will have this way this way this
way and so finally you may end up with two stable isobars and this can undergo
probably both beta plus and beta minus like in the case of copper-64. So in case of even
A isobaric chain you have two parabola because of the pairing energy difference so
odd-odd isobars lie on the upper parabola and the even-even isobars lie on the lower
parabola.



So let us now calculate the Q beta for the isobaric chain so for beta minus decay we have
already seen the Q beta equal to for odd A isobaric chain it was
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So that is the only difference in terms of for the odd-odd A to even-even A isobaric chain.
Similarly, for beta plus decay Q beta
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for even-even to odd-odd. So this is how you can write the Q beta in terms of the local
constants γ and Z0 and if you know the Q beta values for two decays in isobaric chain
then you can calculate γ and Z0 and thereby you can calculate the Q beta for any other
decays in the isobaric chain.



So this I have tried to show here in this graph you can see here this is a isobaric chain for
mass number 156 and you can see here from neodymium, promethium, samarium,
europium, gadolinium. So you can see the two parabola and there is beta decay from
promethium to samarium, samarium to europium, europium to gadolinium and here again
you have from erbium to holmium, holmium to dysprosium and erbium to dysprosium.
So you see here that even A isobaric chain can have more than one stable isobar. This is a
corollary of the two parabolas. So you can see this there can be more than one stable
isobars for even-even isobaric chain. So this is the application of liquid drop model.

Just to see how we can use this model. We solve a problem here for mass number 141.
The Q beta value for the promethium-141 to neodymium-141 is given here and for
neodymium-141 to praseodymium the beta values are given. We have to calculate the Z0,
the most stable isobar from the information that is given here. So we can write the
expression for Q beta plus
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So Q beta is 3.72.

You can write this expression for the other beta decay.
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So these two equations are there and you can solve them for Z0 and γ and by solving you
will find γ is 0.95 and Z0 is 58.55. So that is close to 59.

So 59 is the praseodymium. So praseodymium is the most stable isobar of this isobaric
chain. So this is how we can study the systematic of beta decay and the liquid drop mass
formula derived to find out the Q beta value for beta decay.

Now let us see how the liquid drop model can explain the energetics of nuclear fission
process. We know from the binding energy data, binding energy curve that is binding
energy as a function of mass number. The binding energy per nucleon reaches a
maximum at about mass number 60 and so heavy nuclei when they split into two equal
fragments, there is a gain in binding energy and so Q value should be positive like the
light nuclei when they fuse together to form heavy nuclei there is a gain in binding
energy and so these are in the exoergic reactions.

So grossly you can say that heavy nuclei can undergo fission and because of the change
in binding energy from low binding energy to high binding energy. Let us now calculate
the Q value for fission from the liquid drop model. So assuming that liquid drop model is
considered the highest energy release for a symmetric splitting of a heavy nucleus, we
will consider the splitting of the heavy nucleus A into two equal halves. So we will say Z
going to Z/2, A going to A/2. So there will be two segments of mass and charge A/2 and
Z/2.

So let us see what is the energy released in fission. We had the parent isotope, the
M(Z,A) fissioning nucleus splitting into two fragments of mass Z/2 and A/2. And now
the same thing can be written in terms of the binding energy because the mass number
remains constant. So the difference in the masses can be written in terms of the difference



in binding energy in other way around. Difference in masses of reactant minus product is
equal to difference in binding energy of product minus reactant.

So binding energy of the products minus binding energy of the reactant that is the
fissioning nucleus. So now we can see here, we can write this in terms of twice the
volume energy term of the half the nucleus.
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Now you can see here this volume energy term will cancel out because it is nothing but 2
into av into A by 2 means 2 av. Similarly, you can see here the asymmetric energy term
will cancel out whereas the surface energy and the Coulomb energy terms will not cancel
out because they contain exponential power to the A/2 and A. So you can write now the
Q value for the fission will be
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So let us see the magnitude of this surface energy term and the coulomb energy term and
then we can discuss which term dominates for which nuclei. For 238U substituting in this
value the mass number and Z the Q fission becomes this surface energy term will become
-130 and the coulomb energy term become +300. So you have 170 MeV is the predicted
energy released in the nuclear fission of 238U. So you can see here that the Coulomb
energy term is dominating in the fission of 238U.

For Zinc-64 Q value for fission surface energy term -54.475, Coulomb energy term +49.5
so that is -4.9. So you can see here the Q value for fission of Zinc-64 is negative and so
that explains why the light mass nuclei do not undergo fission.

For the intermediate nucleus the like Molybdenum-100 Q fission will be surface energy
term -73.25 plus Coulomb energy +83.21 that is equal to 10 MeV. So this
molybdenum-100 fission though it is you can see Q value wise it is positive but you will
find that for the fission to take place there is a barrier. If you recall, we explained for the
spontaneous fission it has to cross a fission barrier which is a resultant of the change in
the surface energy and the Coulomb energy and the fission barrier is much higher than
this Q value and therefore the half-life for this will be very high so you do not see fission



taking place. So energetically it may be possible but practically you do not see it. That
explains how liquid drop model can explain the energetics of the nuclear fission process.

The same thing I have tried to explain we will discuss this more when we discuss nuclear
fission but the point, I wanted to bring home is that the liquid drop model explains the
spontaneous fission of heavy nuclei wherein the competition between the surface energy
and the Coulomb energy of a deforming nucleus is responsible for its fate towards the
nuclear fission. So, this we will discuss more in the subsequent lectures on nuclear fission
but right now we will try to summarize that the liquid drop model can explain the masses
of nuclei, it can explain the beta decay energetics, it can explain the energetics of nuclear
fission process but the picture is not that good always.

So there are some limitations of liquid drop model. Some of them are the unusual
stability of Z and N having certain configurations and what I have shown here is the
difference in the experimental and liquid drop predicted masses over a range of proton
number and neutron number and you will find that there are dips that means the
experimental masses are lower than the liquid drop masses at certain configurations and
they correspond to the magic numbers. So that means the magic number nuclei have
lower mass than that predicted based on liquid drop. In addition to that the ground state
spin and parity of the nuclei also cannot be explained by the liquid drop model and the
existence of nuclear isomers also cannot be explained by that. There are in fact many
other properties which we will discuss later on they are difficult to explain in terms of
liquid drop model. So, we will discuss this all in shell model next lecture how shell model
can take care of many of the limitations of liquid drop model.

I will stop here and discuss this shell model in the next lecture. Thank you very much.


