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Hello everyone. So, we go to the second lecture of this course on Nuclear and Radio
Chemistry. So far we have discussed the radioactive decay. We learnt that radioactive
decay follows the first order rate law. And we also discussed the different types of
conditions like, two independently decaying radioisotopes, how does the activity change
with time, and also branching, a radioisotope decaying by two modes, like beta plus and
beta minus, and how does the half-life depend upon the partial half-lives.

Today we will discuss the decay of an isotope to another isotope which is also
radioactive. So there is a chain. The decay happens in a chain of radioisotopes. And so
there will be different aspects of that and lot of applications also which I will be
discussing in this lecture.

So by radioactive decay chain, I mean that a radioisotope A undergoes some decay to B
and B is also radioactive which also decaying further to C. We have already discussed the
radioactive decay of A which follows the exponential decay. So N1 is the number of
atoms of A at any time and which we discussed in previous lecture that it follows an
exponential decay with N1

0 the initial atoms of A and the decay follows an exponential
path. Now let us discuss how the activity of B will change with time if it is growing from
a freshly purified isotope A.



A 🡪 B 🡪 C
N1 (λ1) N2 (λ2)
t=0, N1=N1

0 , N2=0
So the lambda value for A is lambda 1 and for B is lambda 2 and the number of atoms
of A and B at any time t are N1 and N2 respectively. Let us assume the initial conditions
that when time is 0 then there is no daughter product. We have only the N1

0 the initial
number of atoms of A and N2 is 0. So we set up a differential equation for the number of
atoms of B how it is changing with time and solve that equation to find out at any point
of time t how does the number of atoms and hence the activity of B change with time. So
let us see here the rate of change of number of atoms of B will be given by,

dN2/dt = N1λ1 – N2λ2 (1)

B is growing from A so that is N1𝛌1, that is the rate of decay of A is the rate of growth
of B and the B is decaying by the rate dBB by dt equal to N2𝛌2. So there is a growth part
and there is a decay part. Now this is a differential equation and we have to solve it for
N2. So N2 is the number of atoms of B at any time t. So let us see how do we solve.
First we separate the variables.
dN2/dt + N2𝛌2 = N1𝛌1 (2)
N1 we can write as
N1 = N1

0 e-𝛌1t (3)
Thus we have
dN2/dt + N2𝛌2 = N1

0𝛌1e-𝛌1t (4)
To solve such a differential equation we use the integration factor, that is, e𝛌2t. If I
multiply both sides of this equation by this factor it becomes easy to integrate.
dN2/dt e𝛌2t + N2𝛌2 e𝛌2t = N1

0𝛌1e(𝛌2t-𝛌1t) (5)
Now let us integrate this equation. The above equation can be written as
∫d(N2e𝛌2t) = N1

0𝛌1∫e(𝛌2-𝛌1)t + C

So if I integrate then we can see the solution of the integration of this will become,
N2e𝛌2t = N1

0𝛌1/(𝛌2-𝛌1) e(𝛌2-𝛌1)t +C (6)
So now you can now find out the value of the integration constant c that is when t equal
to 0 and N2 equal to 0. This gives, C= - N1

0𝛌1/(𝛌2-𝛌1)



So if we substitute for C in above equation we get,
N2e𝛌2t = N1

0𝛌1/(𝛌2-𝛌1) e(𝛌2-𝛌1)t - N1
0𝛌1/(𝛌2-𝛌1)

Now if I take this e𝛌2t to right hand side then,
N2 = N1

0𝛌1/(𝛌2-𝛌1) {e-𝛌1t – e-𝛌2t} (7)

So this is the equation for the number of atoms of B at any time t. So it contains the
exponential terms due to the decay of A and B. Now if we want to find out the activity
then activity of daughter product B will be
A2 = N2𝛌2 = N1

0𝛌1𝛌2/(𝛌2-𝛌1) {e-𝛌1t – e-𝛌2t} (8)
Taking N1

0𝛌1 =A1
0, we get

A2 = A1
0 𝛌2/(𝛌2-𝛌1) {e-𝛌1t – e-𝛌2t} (9)

So this is an important relationship.
I hope you remember the derivation of this which will be used many times in subsequent
lectures also. So the net result of the radioactive decay chain is that if you want to find
out the activity of B at any time t we determine the number of atoms of B as given above
(7). Similarly for the activity A2 of the daughter isotope (9). So this is an important
relationship and there are several corollaries of this equation which we will discuss in
details subsequently.
Now there will be situations where not only the daughter product is radioactive but the
granddaughter is also radioactive.

A 🡪 B 🡪 C 🡪 D
λ1 λ2 λ3

Granddaughter means C. So when C is also radioactive one can set up similar equation
like we discussed for B the equation for the activity of C as a function of time. So to set
up that equation you can write,

dN3/dt = N2λ2 – N3λ3 (10)
Where,

N1 = N1
0e-λ1t

N2=N1
0 [λ2/(λ2-λ1)] (e-λ1t – e-λ2t)

As derived above.



Again you can put the conditions the initial conditions,
At t=0, N1=N1

0, N2=0, N3=0
So only purely freshly purified parent isotope is present. So under those conditions how
the activity of C will change with time that is the problem we have to solve here. So
already you know the number of atoms of A how they will change as a function of time
(3). Similarly for B we have just now solved the equation (7). And so if you substitute the
value of N1 and N2 in equation (10) and then you solve the differential equation similar
way like we solved the one for N2 then the solution I am not going into the solution of
the differential equation because the same way you can do for this also. So the solution
of that equation will be.
N3 = N1

0 [k1e-λ1t + k2e-λ2t + k3e-λ3t] (11)
Where k1 = λ1λ2/(λ3-λ1)(λ2-λ1), k2 = λ1λ2/(λ1-λ2)(λ3-λ2) and
k3 = λ1λ2/(λ1-λ3)(λ2-λ3)
To obtain the activity of C, you multiply N3 by 𝛌3.
A3 = N3λ3 = A1

0 [λ2λ3/(λ3-λ1)(λ2-λ1) e-λ1t
+ λ2λ3/(λ1-λ2)(λ3-λ2) e-λ2t

+ λ2λ3/(λ1-λ3)(λ2-λ3) e-λ3t] (12)

So, using this equation we can calculate even the activity of the granddaughter product
and there are several cases you will see that we in fact we do produce the radio isotopes
by two decay processes. So, that will come in the discussion subsequently.
Now, there can be situations where the granddaughter instead of being radioactive is a
stable isotope.

In fact this is very common as we discussed A going to B going to C that is the same
situation and the granddaughter is stable it is not undergoing further radioactive decay.
A 🡪 B 🡪 C
λ1 λ2 stable

But you can use the formula for the number of atoms of C which we derived just now to
calculate the number of atoms of C that is formed at the end of some particular time. So,
what we saw just now that the number of atoms of C is given by equation (11).
Now in this case 𝛌3 is zero as the granddaughter is not radioactive. If it is not decaying
means the half-life is infinite so 𝛌3 is 0.
Now as C is stable, λ3=0, 🡪 k3=1



N3 = N1
0 [-λ2/(λ2-λ1) e-λ1t - λ1/(λ1-λ2) e-λ2t +1] (13)

and you can now rearrange above equation in such a way that these terms represent N1
and N2. N1 and N2 are given in equations 3 and 7 respectively.

N3 = N1
0 [ 1- e-λ1t - λ1/(λ1-λ2)(e-λ1t - e-λ2t)

= N1
0 – N1 – N2 (14)

So, the number of atoms of C at any time will be initial atoms of A minus the number of
atoms of A and B at that particular time that is N1 and N2. So, this is how you can
calculate like for example if you have a freshly purified parent and after a long time you
want to know how many atoms of grand daughter will be formed which is stable we can
use this equation provided you know the number of atoms of N1 and N2 at that point of
time. If you know initial activity you can calculate N1 and N2 also. So, that is how we
can try to find out the activity or the number of atoms of the grand daughter.

To extend this further into a larger series like natural radioactive series in fact this
condition was there in the early 20th century when the scientists were trying to separate
the daughter products from the natural radioactivity series and there are n number of
decays as I mentioned uranium-238 undergoes 8 alpha and 6 beta decay to lead-206. So,
suppose at any point of time you want to find out what will be the activity of thorium-230
which is the 4th product or radium-226 is the 5th daughter product. So, in such situation
whatever we discussed just now may not be useful. So, you can go for a generalized
equation and that is called as the Bateman equation.
A 🡪 B 🡪 C 🡪……M 🡪 N 🡪
So, the generalized equation for a decay chain where there are the parent isotope A
decays by subsequent decay to B, C so on to M and so on then you can write a
generalized equation for nth daughter product like,
dNN/dt = NMλM -NNλN



So, this is a similar equation which we just now solved. Now the solution of this
equation will be similar to that we found for the granddaughter but in a generalized way
now and so the number of atoms of this particular isotope at any time t will be given by,
NN = NA

0 (kAe-λAt + kBe-λBt + ….. +kMe-λMt + kNe-λNt)
kA = λA/(λN-λA). λB/(λB-λA). λC/(λC-λA) … λM/(λM-λA)
kB = λA/(λA-λB). λB/(λN-λB). λC/(λC-λB) … λM/(λM-λB)
kM = λA/(λA-λM). λB/(λB-λM). λC/(λC-λM) … λM/(λN-λM)
kN = λA/(λA-λN). λB/(λB-λN). λC/(λC-λN) … λM/(λM-λN)
So, you can set up a generalized equation, in fact you can make a computer program to
calculate the number of atoms of any daughter product at any point of time using this
generalized Bateman equation and this becomes very useful when you have to calculate
the activity of a daughter product like for example you want to separate radium-226 from
an old uranium sample but you want to know a priori what will be the number of atoms
or what will be the activity of radium-226. So, there you can do this calculation and
arrive at whether it is worth going for separation at this point of time or not. So, these
Bateman equations are very useful in finding out the activity of daughter products in a
natural radioactivity series.
Now we will come to another aspect of this radioactive decay chain.

Many a times we will come across situations where, depending upon the half-lives of
parent and daughter you may have the growth and decay of the daughter product in a
different fashion. Now I give this typical case of A going to B going to C with the
number of atoms of A and B being N1 and N2 and their decay constant being lambda 1
and lambda 2 respectively and we derived the expression for the activity of B as a
function of time in terms of the initial activity of parent as given in equation (7). So, now
there are two situations.
(a) The parent is shorter lived than daughter, that means the half-life of parent is less than
that of daughter and in terms of the decay constants the decay constant of parent is more
than that of the daughter.
(b) The second situation is when the parent isotope is long-lived than daughter isotope.
So, that means t1 is more than t2 or conversely 𝛌1 is less than 𝛌2. So, depending upon
the magnitude of 𝛌1 and 𝛌2 or t1 and t2 we will discuss different situations.



Now here the first case where the half-life of the parent is short-lived than that of
daughter and I give you a typical example where you have tellurium-131 having the
half-life of 30 hours, that is, 1.25 day or so. It decays to iodine-131 having half-life 8
days and which is decaying to xenon-131 which is stable.
131Te 🡪 131I 🡪 131Xe
30 hrs. 8 days stable
So, assume that we have initially a freshly purified tellurium-131. So, at t equal to 0 the
activity of daughter that is iodine-131is 0. In such situations if you see the activity
profile of a daughter product. So the general equation was,
A2 = A1

0 𝛌2/(𝛌2-𝛌1) {e-𝛌1t – e-𝛌2t}
This is the generalized equation for the activity of iodine-131. Now here tellurium-131 is
short-lived than iodine-131. So, the activity of tellurium-131 will decay faster than the
growth and decay of Iodine-130. So, what happens let us put this condition here when t
is very high compared to half-life of parent isotope then e-𝛌1t tends to 0.
At t>>T1, e-λ1t 🡪 0

A2 = A1
0 2
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So, you can see here that the daughter activity, after some time after in fact a significant
number of half-lives of the parent will decay with its own half-life. So, this I have tried
to illustrate in the graph. This is in the linear scale. So, the activity, of A1 the parent
tellurium-131 will decay exponentially and from this activity of parent the daughter
activity is growing and then it will reach a maximum and then it will start decaying with
its own half-life.
So, there is a case of no equilibrium. We will discuss the equilibrium case in the second
part of this lecture. Essentially what is happening that it is difficult to resolve the parent
and daughter activity from this data. So, this is a case of no equilibrium that means after
the decay of the parent isotope the daughter isotope will decay with its own half-life.
There are several cases like these cases but there are more useful cases when the parent
is longer lived than daughter and then we have a case of an equilibrium. So, that I will
discuss in the next part of this lecture. Thank you.


