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So, students welcome to today's lecture. We are discussing protein dynamics probed by 

NMR spectroscopy and here we looked at how we can use the R1, R2, NOE to understand 

the protein dynamics. So, today I am going to explain more about how we can  probably 

use these techniques for the interpretation of relaxation data. So, as you know relaxation 

equations are dependent on the calculation of a spectral density that we had discussed in 

the first class which is J(ω). 

 

So, T1, T2, NOE are encoded in this spectral density function. So, like for T1 or R1, it 

depends upon frequency of J(ωH) spectral density function of the proton frequency, J(ωN) 

nitrogen frequency and so on and so forth. R2 can be written in terms of the spectral density 

function like spectral density at frequency 0, spectral density at hydrogen frequency J(ωH), 

nitrogen frequency J(ωN) and so on and so forth. 

 

R2 also has a component Rex here. The NOE is similarly can be written in terms of the 

spectral density function. So, essentially what I mean to say that all the relaxation equations 

are dependent on the calculation of spectral density function and or vice versa using these 

also we can calculate the spectral density function. Now, how to interpret this data? So, 

suppose we are dealing with a folded protein. So, typically for a folded protein these 

relaxation data are interpreted in terms of model free approach of Lipari and Szabo. Now, 

this model free approach talks about the separatability of internal and global motion, this 

is typically for a folded protein. 

 

So, folded protein, consider it as a kind of a sphere. So, what is motion here this is a local 

motion and a global motion. Internal motion and global motion, they can be separated 

based on assumption and this dynamics is described in terms of the overall rotational 

correlation time like τm overall time, the internal time is τe like internal correlation time. 

Then another term called order parameter, which describes the amplitude of this internal 

motion, what is the amplitude of this internal motion. So, Lipari-Szabo basically gives you 



three parameter to describe the dynamics, the overall tumbling time, the internal correlation 

time and the order parameter which describes the amplitude of internal motion. 

 

Now, overall tumbling time of protein can be described by single correlation time and 

internal motion takes place much faster. So, it is overall tumbling happening slowly and 

internal motion happening very faster. So, the correlation for these two motions, the global 

motion and local motion, can be separated and the total correlation function can be given 

by this function.  

𝐶(𝑡) = 𝐶0(𝑡) ∗ 𝐶𝐼(𝑡) 

So, the correlation function for overall motion assuming that isotropic diffusion is given 

and these are the consideration for overall tumbling time and if you do Fourier transform 

of this we can get this spectral density function J(ω). 

 

So now τm being a rotational correlation time for overall tumbling of a protein. The only 

consideration that internal motion is happening too fast here. Now, the internal motion can 

be written as  

𝐶𝐼(𝑡) = [𝑆2 + (1 − 𝑆2) exp (
−𝑡

𝜏𝑒
)] 

So, S is called generalized order parameter and τe is effective correlation time. For a 

completely restricted motion, the generalized order parameter S2 = 1 and if it is completely 

disorder or flexible S2 = 0. 

 

So, typically for any realistic consideration the S2 varies between 0 to 1. Basically, in 

Lipari-Szabo we are considering the Brownian rotational diffusion of any molecule in 

solution and this diffusion can happen in terms of ellipsoid. So, a protein is like ellipsoid 

or a spheroid or a sphere. How it is diffusing that basically comes from this Brownian 

rotation diffusion. So, these consideration are there in Lipari-Szabo interpretation of the 

dynamics data and this is called model free assumptions. So, in modal free assumptions 

essentially we are assuming that overall rotation of this protein molecule is isotropic, there 

is no anisotropy here, there is no orientation dependence here. 

 

So, it is isotropic motion and this method for characterization the overall rotation is a priori 

implies that internal motion for most of the protein is too fast compared to the global 



motion. Also overall rotation is an isotropic. So, usually we are measuring the parameters 

that govern the relaxation of N15 nuclei in this protein. They are kept fixed at some 

predetermined value in this model free analysis. And it assumes that intramolecular motion 

are independent or overall rotational motion is too fast and it is independent. 

 

So, conventional model free approach assumes that protein does not aggregate. So, protein 

stays in a folded state without self-association happening at the concentration where we are 

measuring relaxation  So, with this assumption this model free analysis can be done. So, 

what are assumptions? Isotropic motion, internal motion is too fast than the globular 

motion, and the actually intermolecular motion are independent of overall molecular 

rotation. So just to remind you again, spectral density function J(ω) can be written in terms 

of τc. Just to put things in perspective, if you plot J(ω) versus frequency and τc are denoted 

by this, so that if τc is 100 nanosecond it is tumbling slowly it is a spectral density function 

rapidly decay, if it is 1 ns that is fast, it starts with some value and slowly decay. So, what 

it implies a spectral density function J(ω) which is a Fourier transform of correlation 

function just says that rapidly relaxing domain signal give a broad line. 

 

So, if something is rapidly relaxing that means a bigger protein it gives a broad line if  

slowly relaxing it gives a sharp line. So, this makes sense, right? A molecule that tumbles 

very rapidly can sample a large range of frequency ranging from say few megahertz to few 

like 100 megahertz and the molecule that some tumbles very slowly like a bigger molecule 

that can sample only a narrow range of frequency. So, very long correlation time like 100 

nanosecond or so and samples fewer frequency that is spectral density function J(ω) says. 

So, taking that consideration the original Lipari-Szabo, 

𝐽(𝜔) =
𝑆2𝜏𝑅

1 + (𝜔𝜏𝑅)2
+
(1 − 𝑆2)𝜏𝑒

′

1 + (𝜔𝜏𝑒′ )2
 

 

If there are two motion on two different time scale, you can just separate those two and you 

can add some anisotropic consideration as well. So, essentially you have to solve these 

functions get the generalized order parameter, overall rotational time and internal rotational 

time. So, essentially in the model free analysis data, the parameter that we get it from R2/R1 

ratio is τe which is less than 100 picosecond and τR overall rotational time is more than 1 

nanosecond. So, that is a wide range and these are adjustable parameter that can be obtained 

by fixing the relaxation data. You can calculate the hydrodynamic radii in an iterative 

manner. 



 

So, this is kind of a work flow for selecting a suitable correlation function in a iterative 

manner. So, start with S2 or S2, Rex; S
2, τe internal motion or S2, τe, Rex. So, all those motions 

with slow or fast motions can be fitted. So, if no then reject this model take another model 

and keep iterating to find the generalized order parameter. Another consideration is that we 

have the isotropic motion in a globular protein. But the proteins are not always globular. 

 

There is a fair bit of anisotropy in a protein. So if there is anisotropy, which is commonly 

observed in disordered protein, this Lipari-Szabo model-free approach gets complicated. 

So in those cases where there is anisotropy, Peng and Wagner suggested the calculation of 

power spectral density function using six proton and nitrogen relaxation rate. So what are 

those six? We are going to come in a moment. Now this is called a spectral density mapping 

or spectral density function. 

 

It does not depend upon any model. So it's just free of model and, no dependent on any 

form of time dependence or autocorrelation function, nor does it require any form of 

rotational diffuser tensor of the molecule, it is just does not require any of these. So, only 

thing you need a spectral density mapping at different frequencies. So, for N-H bond that 

are directly sampled at several relevant frequency or say 0 frequency or ωN or ωH – ωN like 

if you add the two frequency and subtract two frequency. 

 

So, these are six J(0), J(ωN) the frequency of nitrogen, J(ωH) frequency of proton, J(ωH – 

ωN) the difference of proton and nitrogen frequency and J(ωH + ωN) sum of proton and 

nitrogen frequency. So, these are the spectral density functions that are there which needs 

to be considered. So, in this spectral density function the main goal is to understand the 

spectral density and several different methods has been derived to model the protein as 

different spectral density function with different parameters are fit to experimental data 

that is what proposed by Peng and Wagner. So, this is called spectral density mapping that 

we are discussing. 

 

So, three mathematical relation between the relaxation parameter T1 and T2 and J(ω) that 

we had seen in previous slide and can be used for calculating this spectral density function. 

So, they come up with a much simpler method for interpreting this relaxation data and that 

was provided in terms of reduced spectral density function. So, what is reduced, that we 



are going to just see it. So, if you consider this J(ωH) ≈ J(ωH + ωN) ≈ J(ωH – ωN). Because 

spectral density function say we are doing at 600 megahertz. 

 

So, proton spectral frequency is at 600 and nitrogen is at 60. So, 600 ± 60 is in the same 

range. So, one can roughly say that J(ωH) ≈ J(ωH + ωN) ≈ J(ωH – ωN). So, this one can club 

into one. So three frequencies will be J(0), J(ωH), and J(ωN). So, instead of five we can just 

do with three spectral density function and as we have seen in the previous slide, they can 

be expressed in terms of three parameters that are R1, R2 and NOE. 

 

So, these three measurable parameter R1, R2 and NOE, we can measure in a residue specific 

manner and using these three we can calculate the spectral density of J(0), J(ωH), and J(ωN) 

using this reduced spectral density function. So, these rates we can measure for proton and 

nitrogen at any frequency. Like say we are doing on 500 megahertz, which means 11.76 

Tesla, as our allowed measurement happening at 0 megahertz, 50 megahertz or 500 

megahertz. And these two like ωH – ωN means 450 or ωH + ωN means 550. 

 

At 17.6 Tesla, 750 megahertz, it means 0 frequency, 750 frequency, 750 megahertz, 675 

and 825, but these three are in the same range. So, we can do with only three of the spectral 

density functions. So, now we have come up to spectral density function. Using these three 

parameters that we have measured R1, R2 and NOE, our J(0) can be calculated or similarly 

J(ωH) or J(ωN) can be calculated. 

 

So, as we know the R1, R2 and NOE. So, what is RNOE? It can be calculated from our NOE 

experiment that we did.  

𝑅𝑁𝑂𝐸 = [({1𝐻} − 15𝑁)𝑁𝑂𝐸 − 1]𝑅1
𝛾𝑁
𝛾𝐻

 

Now, for calculating this we need two other constants called c2 and d2 and the value of 

these are have been calculated. So, the typical value of c2 and d2 at 600 MHz is 1.25*109 

(rad/sec)2 and 1.35*109 (rad/sec)2. Relatively it can change little bit at 750 or 500 

megahertz. Now, using these all parameter, if you have measured the R1, R2, and NOE, 

you can put all these value and can calculate the J(0), J(ωH) and J(ωN). 

 



So, NOE which is fast amplitude motion is reporting more towards J(ωH). Similarly, the J0 

is contributed by R1, R2 and NOE. And here J(ωN) which is at intermediate frequency is 

contributed by R1 and NOE. So, what does this implies? So, J(ωH) high amplitude motion 

like spectral density function at higher frequency. 

 

Let us go here. So we are saying J(ωH) at higher frequency. It captures fast motion. The 

slower motion is captured by J(0). So, J(ωH) is largely determined by the heteronuclear 

NOE, that is a fast amplitude motion and most sensitive to high frequency motion of the 

protein backbone like the motion happening at picosecond time scale that will be given by 

this parameter J(ωH). 

 

Similarly, J(ωN) contributes to R1 and NOE. So, J(ωN) is determined by R1, whereas J(0) is 

contributed from R1, R2 as well as NOE. So, J(0) is sensitive to both nanosecond time scale 

motion as well as exchange phenomena that is happening at slower time scale microsecond 

to millisecond. So, if we are measuring spectral density function at zero frequency, it is 

sensitive to slower time scale motion, nanosecond as well as microsecond to millisecond. 

 

The J(ωN) is given by mostly nanosecond time scale motion, because this is contributed by 

R1 and some also contributes from R2 and NOE. So, nanosecond to picosecond time scale 

motion you can see here. This is nanosecond and microsecond to millisecond time scale 

motion this J(0) is giving and this J(ωH) giving picosecond time scale motion. So, if you 

calculate this spectral density. From the R1, R2, and NOE data, we know exactly how the 

spectral density is mapped across the protein sequence. 

 

And that gives the amplitude of the motion happening across the protein sequence. So you 

see this, the protein that we were dealing, SUMO1, which has an N-terminus tail, and at 

folded region and some loops again. So, here we had calculated in previous slide that if 

you remember the R1 was like this here for flexible tail and this was for kind of a globular 

domain α-helix β-sheet over there and same little bit of the tails were here. That is R1, the 

R2 was low. NOE was negative here. 

 

So, if we calculate J(ωH) using this NOE value you can see here for the flexible portion the 

J(ωH) is very high and for the all ordered, it is relatively low. So, now picosecond time 

scale motion in this protein, for the flexible tail is very high picosecond time scale motion 



is higher here and lower here. Now, if we go to J(ωN) which is dominated by R1, you can 

see there is a one to one correlation between these two like a very large correlation. Higher 

J(ωN) because this is capturing at nanosecond time scale motion and all these are lower, 

the loops are again higher. Now, J(0) which is contributed by R1, R2, and NOE, everything 

has an impact here. 

 

So, you can see this is quite mirroring with our R2 because it is capturing lot more from the 

slower time scale motion. So, spectral density mapping telling it how the protein is 

sampling various amplitude motion across the backbone which are calculated from three 

experimentally determined parameter R1, R2 and NOE. Fantastic. So we understood how 

the spectral density function can be mapped. 

 

So what next? We find it out from the R1, R2, NOE. Now the R2 you know that it has also 

Rex. So if you map this it says that along this line there seems to be exchange phenomena 

happening in this region and that is why you see lots of variation. So the spectral density 

function is also capturing this because the slower time scale motion, microsecond to 

millisecond time scale motion. The exchange is happening and that essentially is nicely 

captured if you measure the spectral density function at a 0 frequency, at J(0). So, now 

using this, there is a linear relation that exists between J(0) and J(ωH) and J(ωN). 

 

You can write this equation,  

𝐽𝑖(𝜔𝑁,𝐻) = 𝛼𝑁,𝐻𝐽𝑖(0) + 𝛽𝑁,𝐻 

So, this is linear relation. Many time, this linearity is affected by contribution of this 

exchange happening, which affects the J(0) value. But if you rearrange this equation, one 

can find it out the τ. You can find τ and ω is a Larmor frequency for N and H. So, if you 

solve this equation linearly, if you plot (ωH) or J(ωN) versus J(0), you can find the α and β. 

Now, you put this α and β here and solve this equation, you can find the τ and that is 

correlation time. 

 

So, now we are finding correlation time in a residue specific manner. So protein is tumbling 

and you can find the correlation time at different time scales. So, same data we are going 

to take it here, J(ωH) or J(ωN) and J(0) and plot as linear function.  So, here is our J(ωH), 

J(ωN), J(0), this is my protein, this is N-terminus, this is C-terminus. Now, can we use this 



equation to fit a linear equation and find out what is happening? So, we calculated for each 

of these amino acid J(ωN) in ns/rad versus J(0) ns/radand we plotted it. 

 

If you plot it, it is not very linear. There are some residue, which deviates from linearity. 

So, you need to fit two curve, one curve for these black residue, one curve for the open 

residue. If you plot these two, now they are looking more linear. Similarly, if you plot J(ωN) 

versus J(0), again very nicely one portion here black and one portion for open circle 

residue. 

 

Now, this telling us very interesting phenomena, because we started spectral density 

function assuming that anisotropy exist. So if you go in this protein structure, you can see 

that the amino acid that are there will have a different kind of motion than a globular 

protein. This you can consider as a sphere, spheroid, or all those. But these guys are 

tumbling in solution and because of that free tumbling, there is anisotropy exists and that 

anisotropy is being captured in the spectral density function. 

 

So, if you plot this linear equation and deduce the parameter that is coming. So, if you fit 

this equation J(0) versus J(ωN), fitting this section separately and fitting this section 

separately. We can calculate from the previous equation that we had α, β and τ. We can 

calculate this three parameter. 

 

Now, just look at this interestingly important thing. For a low amplitude motion, what we 

are finding, two motions are in nanosecond, but there is a motion in microsecond. This is 

a slower motion happening for a globular protein. Some motions are in nanosecond, and 

some motion is in microsecond. However, for this high amplitude, you are getting a 

nanosecond time scale motion of 5 nanoseconds, typically for a protein. Okay, if we plot 

this J(0) versus J(ωH), here again we are getting some τc of nanosecond, but for a high 

amplitude motion for the flexible portion, we are getting some of the motion as fast as 

picosecond. 

 

Now that is a high amplitude motion. We can see for the flexible portion some picosecond 

motion. Now you see here is interesting phenomena happening. Here, this is a flexible tail, 

and it has a correlation time of few nanosecond? Yes, of course. Typical globular protein 

have 5 to 6 nanosecond, but one of the parameter that came here is 21 nanosecond, quite 



high. Because it's a long open rope is tumbling in solution, that of course will have little 

longer correlation time. So now doing this spectral density mapping, solving these 

equations, finding it out what are the α, β and τ, we are deducing now all sorts of correlation 

time that can be seen in the protein. 

 

This gives a wide range of the tumbling time and that is the power of NMR dynamics. If 

you use any other technique like a dynamic light scattering, it is a complementary technique 

for measuring the correlation time of a molecule. You mostly see one or two correlation 

time depending upon how it decays and gives you one correlation time of a protein whether 

it is a globular or elongated. But, NMR precisely gives you all the correlation time that is 

possible measuring the dynamics in a residue specific manner. So, measure this basic 3 

experiment R1, R2, and NOE, from there we deduce the spectral density function J(0) and 

J(ωH) and J(ωN), fitted those equation and solve this quadratic equation to find it out what 

kind of correlation time we are getting. 

 

Now we can reduce it, that why some of the most some of the correlation time are longer, 

because it is open chain and that are expected to show higher correlation. So, that is all 

about time and motion in protein. That is what we in this week wanted to give an impression 

to you that NMR is a beautiful tool to understand the protein dynamics. Because dynamics 

dictate the function, and we can measure the dynamics in a residue specific manner in more 

elegant way than possible from any other complementary technique. So, that is a strong 

point of NMR. 

 

With this I am going to close the lecture for this week. Next week I would like to see you 

in the discussion where we are going to discuss more about protein-protein interactions and 

how we can use NMR to understand protein-protein interactions. So, looking forward to 

have you in the next class. Thank you very much. 


