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Hydrogen Atom: Schrodinger Equation 

Having discussed free particle and particle in a box, the field is now set for us to get into 

Schrodinger equation of hydrogen atom.  

(Refer Slide Time: 00:27)  

 

And I hope that you are as happy about it as this big fat smiling happy nucleus that we have here. 

And the reason why we have this cartoon here is that we should not forget that even though we 

said that Rutherford’s model is not tenable, the basic experiment that had led to Rutherford’s 

model, experiment performed by Marsden remember? This alpha particles shot at a gold foil, most 

of them go through, some of them deviate, and one in twenty thousand turn back, that experiment 

was not wrong.  

So, the basic observation that almost the entire mass, and all the positive charge of the nucleus of 

the atom is centered at a point that still holds. And the fact that the negative charge, the electron in 

the atom is somewhere out in this vast void space in the atom, that also holds. What does not hold 

is that this electron goes around in circles or ellipses or whatever. But well, it does move, how 

does it move?  



We cannot say exactly what the trajectory is, but we can write Schrodinger equation like we did 

for a free particle, like we did for particle in a box. And one more thing that we learned very, very 

important thing in the last module, was that we learnt about spherical polar coordinates. And we 

learned a little bit about angular momentum. So, with this, now, we are all set to talk about 

hydrogen atom.  

As you will see, we are going to set up hydrogen, we are going to set up Schrodinger equation for 

hydrogen atom, then we are going to simplify it, we are going to use certain assumptions, I will 

show you the solution of one part of the equations. And then we are going to just share with you 

what the solutions of the other parts are. And what sense we can make out of them. But before we 

start, let us remember what we have learned so far.  
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The very basic tenets of quantum mechanics are that, we are working with Schrodinger equation, 

we are going to write our Schrodinger equation.  

Âψ = aψ 

Expectation values: 
∫ 𝜓∗Â𝜓𝑑τ

∫ 𝜓∗𝜓𝑑τ
 

 



This started off as a classical wave equation for de Broglie waves. But, the realization that it is an 

eigenvalue equation triggered something much bigger. The postulate of quantum mechanics came 

about, which said that you should be able to write an eigenvalue equation for every physical 

observable.  

So, the wave function contains all the information when the operator operates on it, it should be 

able to give you an eigenvalue equation, the Eigen value that you get is the value of the physical 

observable you are talking about. And it also sort of tells us that for every physical observable like 

position, momentum, energy, angular momentum, we should be able to construct an operator. And 

then this operator would better be Hermitian.  

Because, your eigenvalues must be real, and the operators are also linear. So, these are all the 

postulates of quantum mechanics that we have touched upon very, very briefly. And we know 

already how to calculate expectation values. And one extremely important information that we 

have got now from our study of particularly in a box, is that quantization arises out of boundary 

condition. So, with this, let us now think, how we can formulate the problem of hydrogen atom in 

the language of quantum mechanics.  
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When we try to do that, the first thing that we have write down is the Hamiltonian. Now, hydrogen 

atom is really a two particle central force problem. What is the meaning of central force? As we 

said, the nucleus contains all the positive charge and the electron is a negatively charged particle. 

So, the electron moves in whichever way it moves under an attractive potential of the nuclear. And 

there are two particles, one is nucleus, one is electron and that is always a problem.  

Whenever we have a two particle problem, we try and reduce it to a two one particle problems, 

they are much easier to handle. After we do that, this hydrogen atom Schrodinger equation is 

actually completely solvable. Usually, it is not. So, if you want to make fun of quantum chemist, 

usually tease them saying that these people have only one equation, and they do not even know 

how to solve it for most of the cases.  

Of course, this is a not a very good thing to say and not so valid also, but well when you want to 

pull the leg of people this is what you do. Now, any quantum mechanical formulation of a problem 

starts with writing down the Hamiltonian or rather writing down the operator. If you are talking 

about Schrodinger equation, we have to write down Hamiltonian which is the involved operator 

here. So, what are the terms that the Hamiltonian will contain?  

𝐻̂ = 𝑇̂N + 𝑇̂e + 𝑉̂N-e 

It will contain a kinetic energy term of the nucleus, a kinetic energy term of the electron and a 

potential energy term for attraction between the electron and the nucleus, very simple. And we 

know already what the kinetic energy terms are. We know, that kinetic energy terms are like 



minus h cross square by 𝐻̂ = - 
ħ2

2𝑚𝑁
∇𝑁

2 −
ħ2

2𝑚𝑒
∇𝑒

2 −
1

4𝜋𝜀0

𝑍𝑁𝑍𝑒𝑒2

𝑟𝑒𝑁
.  To differentiate between the two, 

we have written one term in capital N, one term in small e.  

This means a term that is written in terms, this means a term that is expressed by the coordinates 

of the nucleus. And the second term is expressed in coordinates of the electron. The third term of 

course, it is very simple, 
1

4𝜋𝜀0

𝑍𝑁𝑍𝑒𝑒2

𝑟𝑒𝑁
. I think we are all familiar with this, very familiar. I will ask 

you, what is it called? Does this law have a name, I am sure you know what it is.    

And we have written in SI unit for now, that is why this  
1

4𝜋𝜀0
 is there. And since one of the charges 

is plus and one of the charges minus between proton and electron, we have a minus sign here, it is 

as simple as that, 𝑟𝑒𝑁 is a separation between the electron and the nucleus. So, this is the 

Hamiltonian.  
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But we have to solve, we have to write it in a little simpler way before we can proceed further. 

Because you see, if you use that Hamiltonian and write down Schrodinger equation, this 𝛹 that we 

have here for now, we are calling this 𝛹𝑇𝑜𝑡𝑎𝑙 even though 𝛹𝑇𝑜𝑡𝑎𝑙 actually has a little different 

meaning later on, which is not really a part of this course, that we are now doing.  

But generally when we talk for 𝛹𝑇𝑜𝑡𝑎𝑙, we mean a special part of 𝛹 multiplied by a spin part of 

the 𝛹. We are not going to get into spin in this course. Here, when I say 𝛹𝑇𝑜𝑡𝑎𝑙, I mean the 𝛹 of 



the entire hydrogen atom, nucleus as well as electron. That 𝛹 is going to be a function of 

𝑥𝑁,𝑦𝑁, 𝑧𝑁, 𝑥𝑒 , 𝑦𝑒, 𝑧𝑁𝑒, all the six coordinates will be there. We have to make this a little simpler.  
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And we are not going to go through the mathematics of this, but it might help if we understand at 

least what the frames of references are. So, this is how we can formulate the problem. Let us say, 

this here is the nucleus and this is the electron. So, 𝑥𝑁,𝑦𝑁, 𝑧𝑁, 𝑥𝑒 , 𝑦𝑒, 𝑧𝑁𝑒 are the coordinates of the 

nucleus and the electron respectively in a space fixed coordinate system, some absolute coordinate 

system.  

Now, the position vectors are written as 𝑟𝑒 and 𝑟𝑁. Now see, if I try to write this vector, draw this 

vector 𝑟𝑒𝑁, how will I get it? So, these are two vectors right, 𝑟𝑒 and 𝑟𝑁. If I subtract 𝑟𝑁 from 𝑟𝑒, then 

I get r, which is 𝑟𝑒𝑁. And that is given by √(x2 + y2 + z2) . Now, how it comes that we can show 

easier, but I have not even told you what x, y, z are, let me tell you that first, x is given by 𝑥𝑒 − 𝑥𝑁, 

y is given by 𝑦𝑒 − 𝑦𝑁, and z is given by 𝑧𝑒 − 𝑧𝑁. 

What am I talking about here? Where the axis are parallel. So, let us say I will draw this horizontal 

axis that is y, this is I call it 𝑦′. This let us say is 𝑧′, and this here is 𝑥′. I hope it is not very difficult 

to see that x is parallel to 𝑥′, y is parallel to 𝑦′, z is parallel to 𝑧′. So, what is, what am I doing? I 

am doing a transformation of coordinates, I am moving the origin from the absolute value to where 

the nucleus is.  



Now see, what will be the x coordinate of 𝑚𝑒? 𝑥𝑒 − 𝑥𝑁 in this new frame of reference, which I 

have written as x y, 𝑥′, 𝑦′, 𝑧′. Y is going to be 𝑦𝑒 − 𝑦𝑁, z is going to be 𝑧𝑒 − 𝑧𝑁 as simple as that. 

Now, it is very simple to see what your r is. What is r? r is a position vector of the electron in this 

new coordinate system that I have built. Because this is a new origin, and this is the point.  

So, this arrow that you see here, that is the position vector of the electron in this new transformed 

coordinate system. So, this coordinate system is called the internal coordinate system. What does 

that mean? That means, this talks about the displacement of the electron in terms of the nucleus. 

And the other coordinate system that we do not need to talk about in this course is this. These are 

mass weighted or center of mass coordinates.  

When you do this, this is a very standard technique for separation of variables in problems like 

this. You essentially build this coordinate system, second coordinate system, which talks about the 

movement of the center of mass. So, the second one capital X, capital Y, capital Z that talks about 

movement of the center of mass. And this one, small x, small y, small z talks about movement of 

the smaller mass with respect to the larger mass.  

And here, of course, we have to use instead of mass, we have to use reduced mass. I hope you all 

know what reduced mass is. The way I remember it is  
1

𝜇
=

1

𝑚1
+

1

𝑚2
. A question for you, the 

reduced mass suppose I have two masses, 𝑚1 and 𝑚2, let me give you some numbers. One mass 

of unit 1, another mass of unit say 1800, roughly proportional to masses of electron and nucleus.  

Can you calculate the reduced mass of this system, one mass is 1 unit, the other mass is 1800 unit. 

So, I suggest that you stop the video right now, pause the video and work out what the reduced 

mass is. If you have worked it out, you will see that the reduced mass is very, very, very close to 

the smaller mass, 1. And that is what is important here. We will write, we will show you the 

equations shortly.  

There you will see instead of m we have 𝜇, but then in this system, 𝜇 is practically the mass of the 

electron. And capital M, the total mass is practically the mass of the proton, because their masses 

so very different. Now, in this system, you can do a formal separation of variables.  
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We are not going to do it here, just believe me when I say that when I write the Schrodinger 

equation for hydrogen atom in a relative frame of reference, then when we try to do that, first of 

all, I get two equations. One in terms of the center of mass coordinate, and one in terms of the 

relative coordinate.  

[− 
ħ2

2𝑀
𝛻𝑁

2  −
ħ2

2𝜇
𝛻𝑒

2 −
𝑄𝑍𝑒2

𝑟𝑒𝑁
]    Ψ𝑇𝑜𝑡𝑎𝑙  = 𝐸𝑇𝑜𝑡𝑎𝑙. Ψ𝑇𝑜𝑡𝑎𝑙 

 

So, what you see here the first term, it contains capital M, in the denominator, that is total mass, 

practically the mass of the proton.  

M = me + mN  

And this capital R is the coordinates of the center of mass, which is essentially the proton, the 

nucleus, and this second one shaded in blue, that has see 𝜇, a −
ħ2

2𝜇
. What is this 𝜇? Practically the 

mass of the electron.  

𝜇= 
𝑚𝑒 𝑚𝑒

𝑚𝑒+ 𝑚𝑁
 

 And here you have small r, which talks about the displacement of the electron from the nucleus. 

So, this is what we get. Now, how do we separate?  
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We separate in this manner.  
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Well, first of all, this separation is done in this way I am not going to talk about it. Whoever is 

mathematically inclined is welcome to go through all those. We are, we do not really need to do 

this, let us take it axiomatically. So, we have got two equations, one like this.  

[− 
ħ2

2𝑚𝑁
𝛻𝑁

2 −
ħ2

2𝑚𝑒
𝛻𝑒

2 −
𝑄𝑍𝑒2

𝑟𝑒𝑁
] Ψ𝑇𝑜𝑡𝑎𝑙  = 𝐸𝑇𝑜𝑡𝑎𝑙. Ψ𝑇𝑜𝑡𝑎𝑙 



The first term, I will call it 𝐻𝑁̂, because that is the only term on the left hand side, which is in terms 

of the capital mass, a capital M mass, which is sort of the mass of the nucleus, as I have said several 

times.  

𝐻 =̂ 𝐻𝑁̂+𝐻𝑒̂ 

Second, and third terms together make up the Hamiltonian for the electron. Again, why electron? 

Because 𝜇 is practically the mass of the electron. Did I say it too many times? But I have said it, 

but that is all right. Now, how do I write wave function? To write wave, to separate this equation, 

what we do is we write the wave function as a product of two wave functions. One in terms of the 

center of mass.  

Ψ𝑇𝑜𝑡𝑎𝑙   = χ𝑁 . ψ𝑒 

Well, since it is practically the nucleus, I call it χ𝑁 and one in terms of the electron ψ𝑒. So, why 

are we doing this? Remember particle into the 2D box, there also since x and y directions were 

independent, we took the wave function to be a product of a wave function in x and a wave 

functions in y. Here also the nuclear and the electronic coordinates are independent after separation 

of variables. That is why we can write the wave function as a product of a nuclear factor and an 

electronic factor.  

So, when we put that in, what will the energy be? Naturally energy will be a sum of the center of 

mass, that is the nucleus and the reduced mass that is the electron, 𝐸𝑁 + 𝐸𝑒. And what you see is, 

this color coding is used to highlight, which part is associated with nucleus, which part is associated 

with electron. So, now essentially we collect all the terms in the nucleus coordinates. So, from the 

left hand side what will I get? - 
ħ2

2𝑀
∇𝑅

2 .  

That operates on, see when it operates some χ and ψ, what will happen? 𝜓𝑒 is a constant it will 

come out. So, we are doing separation of variables, I will not do it in very much of detail here, 

because we are going to do it in little more detail slightly later, for another equation. So, if you do 

not understand what we are doing here, please wait up a little bit. Let us do that, and you can come 

back and do it yourself.  

𝐻𝑁̂. χ𝑁  = [− 
ħ2

2𝑚𝑁
𝛻𝑁

2]  χ𝑁  = 𝐸𝑁. χ𝑁  



Crux of the matter is, we get one equation as 𝐻𝑁̂. χ𝑁  = [− 
ħ2

2𝑚𝑁
𝛻𝑁

2]  χ𝑁  = 𝐸𝑁. χ𝑁 . And 𝐻𝑁̂ here is 

only the kinetic energy operator. Does that ring a bell? Have you encountered Schrodinger 

equation like this? Actually we have, we have encountered it when we talked about free particle. 

So, this is what gives us the kinetic energy of the atom as a whole. And remember, this is not 

quantized.  

𝐸𝑁 =  
ħ2𝑘2

2𝑀
, k can take up any values. So, essentially the atom as a whole if you look at the atom 

as a whole, you will see it undergoing translational motion and this translational motion energy, 

translational energy is not going to be quantized. This is very important to understand. That being 

said, we do not worry about it anymore, because we are not interested in the movement or atom as 

a whole. We are interested in movement of the electron with respect to the nucleus.  
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For that for the rest of this discussion, we are going to focus on the electronic part of Schrodinger 

equation. Now, if you have not understood anything we have said so far, it does not matter. If you 

can believe that, we have to formulate this Schrodinger equation for the electronic part, and 𝛻𝑟
2 is 

the kinetic energy, well −
ħ2

2μ
∇𝑟

2 is the kinetic energy operator for the electron.  

𝐻𝑁̂. ψ𝑒  = −
ħ2

2μ
∇𝑟

2 −
𝑄𝑍𝑒2

𝑟
 ψ𝑒  = 𝐸𝑁  . ψ𝑒 



This one is the potential, then I think you can understand the rest of the discussion, no problem. 

Now, this is our Hamiltonian. And in fact this is our Schrodinger equation, ∇𝑟
2 as you know is 

𝜕2

𝜕𝑥2 

+ 
𝜕2

𝜕𝑦2 + 
𝜕2

𝜕𝑧2. And r as we have said already is, √(x2 + y2 + z2) . So, if you want you can write it 

like this, you can write it out and this is going to be your Schrodinger equation in terms of x, y and 

z. Is it okay?  

Can we work like this, can we just write is equal to 𝐸𝑒 . ψ𝑒? And try to solve it? Actually, we 

cannot. Because see, earlier when we talk about, talked about 2d, 3d box, we could separate it very 

nicely. Here the problem is, here we have a term in√(x2 + y2 + z2) , you cannot separate it. So, 

your Cartesian coordinates will not work. What should work?  

Well, if you go back to the original form of the equation, here we have written r, and the problem 

is that we cannot separate r into x, y and z. So, if you cannot separate it, can you work with it? Is 

there a coordinate system in which r itself is a coordinate? Actually there is, and we know what it 

is, that is spherical polar coordinate.  
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So, we need to formulate Schrodinger equation in terms of spherical polar coordinates. I will not 

repeat all these relations, and expression for your volume element and all, because we have 

discussed already. Suffice to say, that we need to now reformulate the problem in terms of spherical 

polar coordinates, easier said than done.  
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Because when we try to do that, I have removed all the slides, usually in my regular classes, we 

have a lot of fun showing thirteen slides that we are not going to discuss. That, those thirteen slides 

tell us, how to go over from 
𝜕2

𝜕𝑥2 + 
𝜕2

𝜕𝑦2 + 
𝜕2

𝜕𝑧2 this big scary expression that we have. What we have 

written here is kinetic energy operated in spherical coordinates.  

−ħ2

2𝜇
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2 𝜃
]  

You have to believe me on this, or you have to actually do the transformation yourself. If you want 

to do it, suit yourself. I am not about to do it. I am not about to do it here. That being said, do you 

have to remember this? No. Please do not. Nobody needs to remember anything in a course like 

this. And in case, this is used by some colleges by teachers, my request to teachers is that we should 

never ask questions like, write down the kinetic energy operator in spherical polar coordinates.  

We need to use our brain, not just as a storage device rather we have to use it as a processor. So, 

let us do that, let us focus on understanding rather than memorizing things. This is something that 

is available in many resources, we will just use it. How do I write the Hamiltonian operator? This 

is the kinetic energy operator. So, to get to the Hamiltonian operator, I just have to add the kinetic, 

potential energy term.  

−ħ2

2𝜇
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜓𝑒

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝜓𝑒

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2𝜓𝑒

𝜕𝜑2
] - 

𝑄𝑍𝑒2

𝑟
𝜓𝑒=𝐸𝑒 . 𝜓𝑒 



 

Here it is, how do I write Schrodinger equation. Now, this Hamiltonian in spherical polar 

coordinates has to operate on the wave function. Let us do that, this is your Schrodinger equation 

now. So, this here is Schrodinger equation for the electronic part in spherical polar coordinates. 

And see, what we have. These are the terms in r. These are the terms in 𝜃. And these are in 𝜑. The 

first term is only in r.  

Second term is a mixture of r and 𝜃theta, the third term contains r and 𝜃 and 𝜑. So, we will have 

to find a way of separating these equations. And this is what we are saying that we are going to do 

it at least for this part of the discussion. How do you do it? Well, first of all, let us see how we can 

simplify further. If I multiply by 
−2𝜇𝑟2

ħ2 , what happens? This 𝑟2 gets eliminated.  

So, at least the second term becomes only in terms of 𝜃, except for the wave function of course. 

The third term, the operator part is only in terms of 𝜃 and 𝜑. So, r is eliminated from second and 

third terms. And then we bring this 𝐸𝑒 . 𝜓𝑒 to the left hand side. Again, I recommend that you keep 

on pausing the video, writing down what we should get in the next step. And you come back and 

see the video after that.  

That way, you will understand better. I hope you are doing that. Now, I will show you what the 

answer is if you do this, this is what we get.  

𝜕

𝜕𝑟
(𝑟2 𝜕𝜓𝑒

𝜕𝑟
) +

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝜓𝑒

𝜕𝜃
) +

1

sin2 𝜃

𝜕2𝜓𝑒

𝜕𝜑2  + 
2𝜇𝑟2𝑄𝑍𝑒2

ħ2 𝜓𝑒 +
2𝜇𝑟2

ħ2 𝐸𝑒. 𝜓𝑒=0 

First term becomes 
𝜕

𝜕𝑟
(𝑟2 𝜕𝜓𝑒

𝜕𝑟
), yeah? You have multiplied by 

−2𝜇𝑟2

ħ2 . What does the second term 

become? 𝑟2 would go, 2𝜇 would go, ħ2 would go, you are left with 
1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝜓𝑒

𝜕𝜃
).  

What about the last term? It becomes 
1

sin2 𝜃

𝜕2𝜓𝑒

𝜕𝜑2 . And since you have brought whatever was on the 

right hand side to left hand side, the last term that you get is 
−2𝜇𝑟2𝑄𝑍𝑒2

ħ2 . What is Q? We have defined 

Q to take care of all these constants 
1

4𝜋𝜀0
 and all that. So, that will be 

2𝜇𝑟2

ħ2 𝐸𝑒 . 𝜓𝑒= 0 



  So, this second last term is the potential energy term, the last term is what was there on the right 

hand side. Now, these are in terms of r, only r except for the wave function. These are in terms of 

𝜃 and 𝜑, there are two kinds of coordinates, r is the line and 𝜃 and 𝜑 are angles. So, first, as a first 

step if you can separate r from 𝜃, 𝜑, that is good enough.  
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How do I do it? Again I have to define my wave function in a particular manner. So, let us define 

the wave function as a product of an r dependent part, a 𝜃 dependent part and a 𝜑 dependent part.  

𝜓𝑒(𝑅, 𝜃, 𝜑) = 𝑅(𝑟). 𝛩(𝜃). 𝛷(𝜑)  

We often, do not even write this small r, small 𝜃, small 𝜑 in brackets. We just write capital R, 

capital Θ, capital Φ.  

𝜓𝑒 = 𝑅. 𝛩. 𝛷  

What is capital R? Wave function, what is capital Θ? Wave function, what is Φ capital? Wave 

function, capital R is a wave function that is written only in terms of small r, capital Θ is a function 

of 𝜃 only not r, not 𝜑. Capital Φ is a function of 𝜑 only not r, not 𝜃.  

So, small letters are coordinates, capital letters are wave functions. How are we okay? How is it 

that we can write it? Well, we are doing separation of variables and these are all independent 

coordinates. So, let us write that, this is what your equation becomes.  



𝜕

𝜕𝑟
(𝑟2 𝜕(𝑅.𝛩.𝛷)

𝜕𝑟
) +

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕(𝑅.𝛩.𝛷)

𝜕𝜃
) +

1

sin2 𝜃

𝜕2(𝑅.𝛩.𝛷)

𝜕𝜑2  + 
2𝜇𝑟2𝑄𝑍𝑒2

ħ2
(𝑅. 𝛩. 𝛷) +

2𝜇𝑟2

ħ2 𝐸𝑒 . (𝑅. 𝛩. 𝛷)=0 
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Now, what? What happens when you try to differentiate? Well, this is the step that we had skipped 

earlier. So, let me at least draw some arrows here. And let me show you, let us take the first term. 

When I differentiate see this Θ, Θ and Φ, they are not functions of R. So, as far as R is concerned, 

they are constants, so they are going to come out. Similarly, in the second one, capital R, and Φ, 

these are not functions of small r.  

So, they are, sorry they are not functions of 𝜃. So, they are also going to come out. And in the third 

term, we are differentiating with respect to 𝜑. So, capital R and Θ which are not functions of Φ, 

they are constants as far as this differentiation is concerned. And last two terms you do not even 

have to worry about, because they are just products. So, that is what we get. And again please 

pause, work it out yourself and then only see the next step. When you do that, this is what you get.  

(Θ.Φ)
𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
) +(R.Φ)

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
)+ (𝑅. 𝛩)

1

sin2 𝜃

𝜕2𝛷

𝜕𝜑2+ 
2𝜇𝑟2𝑄𝑍𝑒2

ħ2
(𝑅. 𝛩. Φ) +

2𝜇𝑟2

ħ2 𝐸𝑒 . (𝑅. 𝛩. 𝛷)=0  



(Θ.Φ)
𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
). In fact, there is no need to write del here anymore, because I do not have a partial 

derivative any longer, is not it? So, it is absolutely okay and it is desirable that I write  
𝑑𝑅

𝑑𝑟
, that is 

actually better. Similarly, the second term we have, (R.Φ) outside  
1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
).  

So, again I can write actually 
𝑑𝛩

𝑑𝜃
. There is no need of writing that 𝜕Θ any longer. And finally, in 

the third term, (R.Φ) come out and you are left with 
1

sin2 𝜃

𝜕2𝛷

𝜕𝜑2, again it is better to write 
𝑑2𝜑

𝑑𝜑2. 

Remember  
𝑑2𝜑

𝑑𝜑2 wave function, 𝜑 dependent wave function as small 𝜑 is the coordinate. So, and 

these are the other terms.  
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What is the next step? Obviously, you do not want this (Θ.Φ) in the first term, you want to get rid 

of it. The easiest way of doing it is to divide by (R. Θ.Φ), do it and see what you get. Yeah? 

Multiply by 
1

 (R.Θ.Φ)
, please do it yourself. This is what you get, 

1

𝑅

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
). This, and this, I am 

not going to read out everything here. This is what you get. And now have a look.  

1

𝑅

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
) + 

1

𝛩

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
)+ 

1

𝛷

1

sin2 𝜃

𝜕2𝛷

𝜕𝜑2+ 
2𝜇𝑟2𝑄𝑍𝑒2

ħ2 +
2𝜇𝑟2

ħ2 𝐸𝑒=0  
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Well, I have written a little more neatly here. Now, see, these are the terms in r, no 𝜃, no 𝜑. These 

two terms are in terms of 𝜃, 𝜑 only, no r. These are equal to 0, rearrange a little bit. 

1

𝑅

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
)  + 

2𝜇𝑟2𝑄𝑍𝑒2

ħ2 +
2𝜇𝑟2

ħ2 𝐸𝑒 = − [
1

𝛩

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) + 

1

𝛷

1

sin2 𝜃

𝜕2𝛷

𝜕𝜑2
] These are equal to 

each other, but left hand side is in terms of r, right hand side is in terms of 𝜃, 𝜑, they are 

independent coordinates. So, this radial and angular parts, the part in radial and part in angular 

coordinates, the part in r and part in 𝜃, 𝜑, they must be equal to some constant, we write it 𝛽.  

Why? Because left hand side is in terms of r, small r. Right hand side is in terms of  𝜃 𝜑, how can 

they not be constant? They have to be a constant, a very simple mathematical tool that is used 

universally.  
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So, when you do that, you get two equations. The first one is called the radial equation. Second 

one is called angular equation. 

1

𝑅

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
)  + 

2𝜇𝑟2𝑄𝑍𝑒2

ħ2 +
2𝜇𝑟2

ħ2 𝐸𝑒 = 𝛽  

[
1

𝛩

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) +  

1

𝛷

1

sin2 𝜃

𝜕2𝛷

𝜕𝜑2
] =  −𝛽   

And please note that they are connected by 𝛽. They are not independent of each other. For example, 

in the Schrodinger equation for 2D, particle in a 2D box, the two, the equations were independent. 



Here, they are not independent, they are actually correlated by 𝛽. And I do not have to do anything 

more for the radial part. It is sorted. But Angular equation, I have to still work a little more, because 

we have 𝜃 and 𝜑, mixture of those. How do I do it? Same thing, first of all multiplied by sin2 𝜃, 

this is what you get.  

sin 𝜃

𝛩

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) +  𝛽 sin2 𝜃 =  

−1

𝛷

𝜕2𝛷

𝜕𝜑2  

First term is only in 𝜃, second term is only in theta. Well, then I take this just, I sort of inter change 

sides. So, now left side is in 𝜃, right side is in 𝜑. Again, these are going to be equal to some 

constant, this constant I call 𝑚2.  

sin 𝜃

𝛩

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) +  𝛽 sin2 𝜃 =𝑚2 

−1

𝛷

𝜕2𝛷

𝜕𝜑2 =  −𝑚2  

Now, why 𝑚2? Why not k? Because I know what we are going to do later. We are not the first 

people doing it here. It is absolutely okay if you write k or whatever you want to write, but I know 

that life becomes simpler and meaningful, if I write 𝑚2 here, that is the only reason why it has 

been written this way.  
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So, we have three equations. One, a function of r, one, one in terms of r, one in terms of 𝜃, one in 

terms of 𝜑. They are separated. What we are going to do next is that we are going to try to solve 

this simple one. And while I am speaking, many of you would have solved it also.  

1

𝑅

𝜕

𝜕𝑟
(𝑟2 𝜕𝑅

𝜕𝑟
)  + 

2𝜇𝑟2𝑄𝑍𝑒2

ħ2 +
2𝜇𝑟2

ħ2 𝐸𝑒 = 𝛽  

sin 𝜃

𝛩

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) +  𝛽 sin2 𝜃 =𝑚2 

−1

𝛷

𝜕2𝛷

𝜕𝜑2 =  −𝑚2  

But let us take a break now. We will come back and we will solve this. And we will tell you what 

the solutions are of the r dependent part and the 𝜃 dependent part. 


