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Quantum mechanics of a free particle 

We have established the tenets of quantum mechanics. Now, we are going to slowly get into 

systems in which quantum mechanics is applicable, and we will see how we can build a description 

of these systems.  
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The first system that we are going to talk about is a particle that is as free as this colorful little bird 

here. We call it a free particle, what is the meaning of a free particle? We will come to that.  
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But before we do, let us remind ourselves that so far, we have discussed Schrödinger equation, we 

have said that Schrödinger equation yields wave functions and this wave functions sorry about the 

mistake in spelling here, these wave functions are interpreted by Max Born to be associated with 

what we call probability waves. So, |Ψ(𝑥, 𝑡)|2is equal to the probability density that is what we 

have said.  

So, so far, we know that psi has to be a solution of Schrödinger equation, it must be normalizable. 

Why? Because if ΨΨ* is probability density, then we remember that ΨΨ* or the way it is 

conventionally written, Ψ∗Ψ𝑑𝜏 is the probability of finding the particle in a small volume element 

𝑑𝜏 at a particular position.  

So, if it is Cartesian coordinate 𝑑𝜏 will be dx, dy, dz. So, probability of finding a particle 

somewhere in space at this point is given by the probability of finding it in this small little box 

here, which is called the volume element. And we are saying the volume of this volume element 

is 𝑑𝜏. This is probability and ΨΨ* is probability density.  

Naturally, you have to find the particle somewhere in space. So, we write ∫ Ψ∗ Ψ𝑑𝜏 over all space, 

I will just write all space here, I think in the last class, I had written - ∞ to + ∞ I will not do that, 

because you will see what ∞ might mean here. It is not necessarily ∞, ∞, so integrate it over all 

space that has to be equal to 1 that is your normalization condition.  



Next, we said psi has to be continuous. And we will see how this is very useful in our discussion, 

maybe not in this module, in the next module. Now, 
𝑑Ψ

𝑑𝑞
, this has to be continuous in q, we are 

going to see that, this is not a very rigid condition, this does not really arise out of Born 

interpretation, it arises out of the requirement that we are writing a second derivative, that is why. 

Ψ must be single valued. This of course comes from Born interpretation, you cannot have more 

than one probability density for a given point. And it has to be quadratically integrable. That these 

are in a nutshell the conditions that a wave functions must satisfy. And as we are going to see in 

the next couple of modules, quantization arises out of application of these conditions, imposition 

of these conditions.  
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And we will do that. And we will study these three systems. Today we will talk about free particle, 

then we are going to encage that particle, put it in what is called a square well potential, that is 

called the particle in a box problem. And finally, we will go on to discuss hydrogen atom.  



(Refer Slide Time: 3:44)  

 

But before that, I want to talk a little bit about Eigen functions, Eigen values and expectation 

values. And I have been a little lazy. That is why I have not really written these things here. I will 

write it in real time. So, as we said, the postulates of quantum mechanics tell us that for every 

observable, we should be able to construct an operator here I am writing Â. 

And when this operator operates on the wave function Ψ, we get an Eigen value equation, where 

the same Ψ is multiplied by a number, that number is called the Eigen value. It is not necessary 

that always a system will be described by a wave function that is an Eigen function of the operator 

that we desire. And that is what we will need to understand. You might remember that in the 

postulates, we had said that the wave function has to be a sum of mutually orthogonal Eigen 

functions.  

So, let us say that I have a wave function Ψ for some system, and we are actually going to encounter 

a system like this very soon, which is a linear combination of say 𝑎1𝜙1, remember I do not 

necessarily have to write Ψ for a function I can write anything. So, 𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3  and 

these 𝜙 are such that they are Eigen functions. So, let us say Â operates on the wave function 𝜙1 

to give us, I have written ‘a’ already, so let us say 𝑐1𝜙1, let us say Â operates on 𝜙2 to give us 𝑐2𝜙2 

and Â operates on 𝜙3 to give us 𝑐3𝜙3. 

Is Ψ an Eigen function of A in that case, let us see. Remember these are all linear operators. So, 

when Â operates on Ψ, what do I get? I get 𝑎1𝑐1𝜙1 + 𝑎2𝑐2𝜙2 + 𝑎3𝑐3𝜙3, where is the 𝑐1𝜙1 and 



𝑐2𝜙2 coming from? From here. Now, see is there any way in which I can take this 𝑎1𝜙1 + 𝑎2𝜙2 +

𝑎3𝜙3 out? This will happen only if 𝑐1 = 𝑐2 = 𝑐3. If 𝑐1 = 𝑐2 = 𝑐3 equal to some c, then only, only 

then I am going to get Â𝛹 = 𝑐. [𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3], which is essentially Ψ.  

So, now I get c multiplied by Ψ (cΨ). So, the problem now is that, that is the only condition in 

which it will be an Eigen value equation. So, a linear sum of Eigen functions is an Eigen function, 

if the constituent Eigen functions 𝜙1, 𝜙2, 𝜙3 here have the same Eigen value. This is something 

that we are going to use when we talk about p orbitals later on. But this is a very specific case. 

What is the general case? The general case is that this is not an Eigen function. If 𝑐1, 𝑐2 and 𝑐3 are 

not equal to each other, then what happens?  

Then, what are the values that I will get if I perform some experiment? Remember we had talked 

about wave function collapse, we had said that the system before measurement exists in an 

entangled state, when you perform a measurement, it collapses into a particular wave function 

depending on the experiment you perform, and that is what you see.  

So, when you perform an experiment on the system, I am going to see either 𝜙1 or 𝜙2, or 𝜙3. For 

a given experiment, for or rather let me say for a given observation, the system is going to reveal 

itself to us either as 𝜙1 or 𝜙2 or 𝜙3. And one thing I forgot to say is that 𝜙1, 𝜙2, 𝜙3, these are all 

normalized wave functions. So, you are going to see either 𝜙1 or 𝜙2 or 𝜙3.  

So, the variable A that you measure, you are going to, for some experiments you are going to see 

a value of 𝑎1, for some experiments, for some experiments, you are going to see a value of 𝑐1 . For 

some experiments, you are going to get a value of 𝑐2 . For some you are going to see a value of 𝑐3 

. What is the average value that you will get?  
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As we said, you are going to see either 𝑐1 or 𝑐2 or 𝑐3. When you perform a particular observation 

or particular experiment, what is the average value that you will see? Average value of let us say, 

c, or I could have written Â also, that is going to be if I am using a bad convention, I should have 

written 𝑐 as coefficient and A as Eigen value, but that is fine.  

So, that is going to be integral. And I hope you remember this Dirac notation, <(𝑎1𝜙1 + 𝑎2𝜙2 +

𝑎3𝜙3)|. Then Â operating on, the second vertical line is absolutely not necessary, it is just written 

so that it looks a little better, |𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3>. What will I do? First of all, I will work with 

the ket vector, I will leave the bra vector as it is, and write <(𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3)|.  

And now what happens when Â operates on 𝜙1, I get 𝑐1, and 𝑎1 is already there. So, in the ket 

vector, I get |(𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3)>. I hope you understand what I am doing. When Â operates 

on 𝜙1, I get 𝑐1𝜙1. So, when Â operates on 𝑎1𝜙1 , I get 𝑎1 . Â𝜙1, that is equal to 𝑎1. 𝑐1𝜙1. These are 

linear operators remember. And similarly, we can proceed with 𝜙2 and 𝜙3 also.  

Now, I will open the bracket and write what I get. I have missed something. In the denominator, I 

will get something, denominator is also there. I am not writing it in the first line, second line at 

least I should write. In the denominator I get <(𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3)|(𝑎1𝜙1 + 𝑎2𝜙2 + 𝑎3𝜙3)>. 

Because you know, there is no guarantee that this Ψ is normalized. So, in order to normalize it, I 

have to divide it by this integral ΨΨ*.  



So, let us go ahead and open this now, what will I get in the numerator? I get well, something 

like this 𝑎1
∗𝑎1 because the coefficients can also be imaginary, multiplied by 𝑐1 < 𝜙1|𝜙1 >, there 

is a first term I get. Similarly, second term I get will be from say 𝜙2 , 𝜙3, so let us just take the 𝜙𝑖 

terms first. 

What will I get there? 𝑎2
∗𝑎2 𝑐2 < 𝜙2|𝜙2 > overall space + 𝑎3

∗𝑎3  𝑐3 < 𝜙3|𝜙3 > overall space. And 

then I just write one more term and not write anything else. Because what will be this one for 

example, if I take 𝑎1𝜙1 and 𝑎2 𝑐2𝜙2, then I will get 𝑎1
∗, remember anything in bra vector is actually 

complex conjugate 𝑎1
∗𝑎2, then I will get 𝑐2 is a constant, it comes out < 𝜙1|𝜙2 > overall space. 

And I will get many more terms like this.  

The problem is < 𝜙1|𝜙2 > overall space is actually 0. Why? Because they are the functions that 

we said we have defined that 𝜙1, 𝜙2, 𝜙3 are mutually orthogonal. So, the only terms that will 

survive are the ones on the top. What about the denominator? Well, the three terms that I have 

written out, this is going to be 0.  

What is the denominator? Denominator is going to be 𝑎1
∗𝑎1 < 𝜙1|𝜙1 > + 𝑎2

∗𝑎2 < 𝜙2|𝜙2 >

+ 𝑎3
∗𝑎3 < 𝜙3|𝜙3 >. Now, see these 𝜙1, 𝜙2, 𝜙3 they are all normalized, so I can write like this 

now < 𝜙𝑖|𝜙𝑖 > , I can just like write i, i can be 1 or 2 or 3, < 𝜙𝑖|𝜙𝑖 >overall space is actually 

equal to 1 as they are all normalized.  

So, what does the average value turn out to be? It turns out to be 𝑎1
∗𝑎1 𝑐1 + 𝑎2

∗𝑎2𝑐2 + 𝑎3
∗𝑎3 

𝑐3 divided by 𝑎1
∗𝑎1 + 𝑎2

∗𝑎2 + 𝑎3
∗𝑎3. This is your average value. So, it is important to understand 

what we have just seen, this is a very important aspect of quantum mechanics. 

What we have learned is that when you perform a particular experiment, you are going to 

experience one of these Eigen functions. So, you will get one of their Eigen values, fine. And then 

when you perform an average measurement, what will be the number of times you observe C1 or 

C2 or C3 that depends on 𝑎𝑖
∗𝑎𝑖. So, mod square of the coefficient of these wave functions gives 

you the fraction of times you are going to see a particular Eigen value.  

This is an important thing in quantum mechanics that we needed to know before we can go ahead 

further. And we have also learned in the process that if all the Eigen values are the same, then the 



linear combination is going to be an Eigen function as well. That being said, let us now go ahead 

and talk about our free particle.  
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The meaning of free particle is that if you write the Schrödinger equation [−
ℏ2

2𝑚
 

𝜕2

𝜕𝑥2 +

𝑉(𝑥)]𝜓(𝑥) = 𝐸. 𝜓(𝑥) , this 𝑉(𝑥)is going to be 0, free particle means we have created a situation 

where the particle is not under any field of anything in the universe. So, you can think it is like 

you have an atom and you are provided ionization energy to the electron. So, the electron has 

just come out of the potential of the atom. Or you can think of a satellite that has just come out of 

the gravitational potential of earth, that kind of a particle is a free particle.  

In fact, you can create free electrons and stuff in equipment, like what are called synchrotrons. 

So, 𝑉(𝑥) going to be equal to 0. So, the Schrödinger equation then for free particle boils down to 

this [−
ℏ2

2𝑚
 

𝑑2

𝑑𝑥2]𝜓(𝑥) = 𝐸. 𝜓(𝑥). Now, we are working in 1 dimension to start with, if we are 

working in 3 dimensions, if we said the particle is free in all directions, then I just have to add  

𝑑2

𝑑𝑦2 +
𝑑2

𝑑𝑧2 and Ψ would have been a function of x and y and z, not very difficult to extrapolate 

from here.  

So, this is Schrödinger equation for a free particle in one dimensional space. And this here [−
ℏ2

2𝑚
 

𝑑2

𝑑𝑥2] , this is the kinetic energy operator. It is often called the T operator and here since it is along 



x direction, I will write 𝑇𝑥̂. This is the kinetic energy operator. So, this E of course, is going to be 

only kinetic energy for a free particle, as we said there is no potential energy anyway.  

Now, this is a differential equation. And we are familiar with these differential equations, I hope. 

So, the trial solution that we can think of is 𝜓(𝑥) = 𝐴 𝑠𝑖𝑛𝑘𝑥 + 𝐵 𝑐𝑜𝑠𝑘𝑥, we can think of another 

kind of trial function or solution as well, we will come to that.  
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Now, here, is this a good trial solution? Well, to know that all we have to do is differentiate, 

differentiate once, this is what you get 
𝑑

𝑑𝑥
𝜓(𝑥) =

𝑑

𝑑𝑥
(𝐴 𝑠𝑖𝑛𝑘𝑥 + 𝐵 𝑐𝑜𝑠𝑘𝑥) = 𝑘(𝐴 𝑐𝑜𝑠𝑘𝑥 −



𝐵 𝑠𝑖𝑛𝑘𝑥), differentiate twice this is what you get  
𝑑2

𝑑𝑥2 𝜓(𝑥) = −𝑘2 𝑑

𝑑𝑥
(𝐴 𝑠𝑖𝑛𝑘𝑥 + 𝐵 𝑐𝑜𝑠𝑘𝑥) =

−𝑘2 𝜓(𝑥). I am not going through the steps because it is very simple. This is the solution. I 

encourage you to just do it once yourself, and then you will be convinced.  

Now, the question I want to ask is, what is this k? I have got 
𝑑2

𝑑𝑥2 𝜓(𝑥) = −𝑘2 𝜓(𝑥). What is k 

then? If I plug k back into the original Schrödinger equation, we see that if I replace 
𝑑2

𝑑𝑥2 𝜓(𝑥) by 

a −𝑘2 𝜓(𝑥), then I get 
ℏ2

2𝑚
𝑘2 𝜓(𝑥)= 𝐸. 𝜓(𝑥). 

Or in other words, I can write this energy as 
ℏ2𝑘2

2𝑚
, k is a measure of energy or rather k is a 

measure of energy. And remember that this energy is entirely kinetic energy. So, I can write 

another expression here, I know that if it is kinetic energy, then what is the relationship between 

kinetic energy and say linear momentum. 

I will write Px here, because the motion is only along x. So, 𝐸 =
𝑃𝑥

2

2𝑚 
 we know that. So, if I compare 

this expression 𝐸 = 
ℏ2𝑘2

2𝑚
 and this expression 𝐸 =

𝑃𝑥
2

2𝑚 
, then what will I get? 2m in the denominator, 

so, 𝑃𝑥
2 = ℏ2𝑘2 and so, well, what is Px then? That will be equal to ±𝑘ℏ.  

So, what we see is that it appears that we are going to have a momentum of 𝑘ℏ and the particle 

can move in this direction or in that direction. So, that is what seems to come out and we are going 

to arrive at it in another way also. So, 𝑘 = ±
√2𝑚𝐸

ℏ
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Plug it back into the trial solution, you get an expression  𝜓(𝑥) = 𝐴 sin
√2𝑚𝐸

ℏ
𝑥 + 𝐵 cos

√2𝑚𝐸

ℏ
𝑥. 

And if I plot it, this is the kind of function that I get. This looks like a cos function or a sin 

function, it is not, I actually multiplied sin x by some 3 or something and added it to cos x by 2 

or something. So, this is what you get.  

Now, is this a good wave function? Actually, it is not, because you can see clearly that it goes from 

plus ∞ to minus ∞, it does not become 0 anywhere, it is not normalizable. So, there is a little bit of 

a problem. So, to work with a free particle, what one does is, one uses the technique of box 

normalization, which means that if you say that you set some limits, you set long limits, 15 

angstrom, 20 angstrom, something like that. 

And you say that the particle exists within this limit and you normalize within that, of course, it is 

not a very, very rigid way of doing it, but that is the best you can do. So, be aware that the wave 

function for free particle is not really a perfect wave function. 
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That being said, we can actually write the wave function in a different manner also, instead of 

writing the sin and cosine functions, I can write this kind of an exponential 𝜓(𝑥) =  𝐶𝑒𝑖𝑘𝑥 +

𝐷𝑒−𝑖𝑘𝑥, I leave it to you to differentiate it twice and convince yourself that this function also 

satisfies the Schrödinger equation for a free particle, you can arrive at it in another way, I think 

we all know that 𝑒𝑖𝑘𝑥 = cos 𝑘𝑥 + 𝑖 𝑠𝑖𝑛𝑘𝑥, and 𝑒−𝑖𝑘𝑥 = cos 𝑘𝑥 − 𝑖 𝑠𝑖𝑛𝑘𝑥. 

Now, if you multiply 𝑒𝑖𝑘𝑥  by C, multiply 𝑒−𝑖𝑘𝑥 by D add them up, you are going to get something 

that will be a sum of a sin and cosine functions. But the reason, the good thing about writing the 

function in this particular form is that it starts making sense. Why does it start making sense?  

Well, the momentum operator, what is momentum operator? I will come to that, before that let me 

just say this. I differentiate 𝑒𝑖𝑘𝑥 let us say with respect to x,  
𝑑

𝑑𝑥
𝑒𝑖𝑘𝑥, what do I get? I get 𝑖𝑘 𝑒𝑖𝑘𝑥. 

So, this is actually an Eigen value equation. The only problem is that the Eigen value is imaginary. 

But it is not really a problem, because if you think of the linear momentum operator, linear 

momentum operator is actually 
ℏ

𝑖
 

𝑑

𝑑𝑥
.  
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So, you multiply the previous result 𝑖𝑘 𝑒𝑖𝑘𝑥 by 
ℏ

𝑖
, you end up getting ℏ𝑘. What is ℏ𝑘? ℏ𝑘 then is 

the value of the linear momentum that you get if the linear momentum operates on the first term 

in the wave function. What would you get if the linear momentum operates on the second term of 

the wave function? 

You are going to get −ℏ𝑘. This is absolutely in line with the argument that we had proposed a 

little while ago, we had also obtained the values of +ℏ𝑘 and for the momentum, even before using 

the operator. So, using the operator, it makes sense. That is why number 1, so we see that the 

particle can move in this direction, or in that direction. 



What is the probability? Probability is equal, there is no bias for any direction. And probability 

being equal is given, will ensures that the coefficients also have to be such that their mod squares 

have to be same. This discussion that we just performed, I hope it rings a bell about the discussion 

that we performed maybe five, ten minutes ago, writing on the surface, remember what happened. 

We perform a measurement; we are going to experience one of the Eigen functions of that 

particular operator that is what we see here. So, linear momentum can be either +ℏ𝑘 or −ℏ𝑘. 

That is what we learned. Average value of course has to be equal to 0. Again, I leave it to you to 

plug in this wave function into the expression for average value, of course, you will have to use 

this second form 𝜓(𝑥) =  𝐶𝑒𝑖𝑘𝑥 + 𝐷𝑒−𝑖𝑘𝑥 and you can work it out yourself.  

But even without doing it, we can see from simple logic, that probability of moving either direction 

should be the same. So, this average value must be equal to 0. Average value of momentum is 

equal to 0, average value of energy is not equal to 0, because energy depends on 𝑘2 and not k.  

So, what have we got so far? Is there any restriction of k? No. So, there is no restriction of E as 

well. So, for a free particle, the first quantum mechanical system we have studied, there is no 

quantization. Where will quantization arise from? If we cannot find the particle, if we put it in a 

box, we will see in the next part, in the next class, that quantization arises nicely. 


