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Vibrational spectroscopy 

We learnt about micro-spectroscopy and that has got to do with rotation of molecules. Now, 

we will try to see what information vibration of molecules can give us. And vibrations if you 

might remember, they are in infrared regime, energy of vibrations of molecules is typically in 

the infrared regime. 

So, vibrational spectroscopy is also called IR spectroscopy. And again, this is a spoiler, IR 

spectroscopy gives us an idea of bond strength, rotational spectroscopy, micro spectroscopy 

gave us an idea of bond length, here we are going to get an idea of bond strength. So, again let 

us work with the same molecule the HCl. 

(Refer Slide Time: 00:57) 

 

HCl is a diatomic molecule with a permanent dipole moment. So, what happens when it 

vibrates, what happens? When it vibrates, essentially the dipole moment keeps changing. So, 

now, you can think, if you now plot the dipole moment along this direction, what will happen, 

it will go up then go down and then go up again. 

Again, you get an oscillation kind of behaviour, oscillatory behaviour, but the graph will look 

a little different from what it did earlier because there is not going to be any minus sign. 

Because dipole moment will always point in one direction, the large dipole moment. Well, 



something like this keep on increasing become large, then keep on decreasing to that value, 

keep on increasing to that. 

So, that kind of a variation, so maybe sin2 θ kind of, sin2 x kind of variation will be there. So, 

the basic assumption in formulating the quantum mechanical treatment of HCl to start with at 

least is that the bond between two atoms behaves like a spring and not just any spring, a spring 

that is well behaved. 

A spring that follows Hooke’s law, Hooke’s law you must have studied is such where the force, 

restoring force is proportional to the displacement and it is always towards the center that is 

why you get this minus sign and potential energy that comes here. Now, for the first time we 

are encountering potential energy after hydrogen atom, for hydrogen atom molecules we did 

have potential energy. 

But here in rotations, there is no potential energy, for vibrations potential energy is there and 

that potential energy is a parabolic potential, 
1

2
𝜅(𝑟 − 𝑟𝑒𝑞)

2, req is the equilibrium distance or 

equilibrium bond length. So, deviation from that and square of that, that gives you the 

parabolic potential associated with harmonic oscillators. So, harmonic oscillator is the 

approximation we are going to use at least to start with. 
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The question is, is this a valid approximation? To answer that, we have plotted this I hope you 

are familiar with this shape now, this is what we obtained when we talked about say di-

hydrogen molecule and two atoms very far away from each other, energy of interaction is 



negligible, then they come close, close, close; energy keeps on decreasing, stability gives an 

increasing, goes to a minimum value at equilibrium bond length. 

And then for further approach, there is a sharp increase in potential energy. So, this really is 

the potential energy surface, which is approximately can be modelled by something called a 

Morse potential. And this is definitely not parabolic. But if I draw a parabola on it, you can see 

that in this region, for small displacement, the parabola more or less holds up to here, then there 

is a deviation, here also then there is a deviation. 

So, if you are content, working with small vibrational energies, small displacements, then the 

parabolic potential might work. So, we are starting with that kind of a hope. So, we are starting 

with the hope that good, it is a good approximation, simple harmonic oscillator for small 

displacements. 
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So, this is our parabolic potential, and we can plot it like this. Now, we will write 

Schrodinger equation as usual. What is it? It is (−
ℏ2

2𝜇
∇2 +

1

2
𝜅𝑥2). Remember, once again, we 

are using μ because it is a two-body problem, HCl, this is H, this is Cl. But we do not like 

two-body problems, more difficult to handle. So, we reduce it to a one body problem. 

And when we do that, the mass that we need to consider is neither the mass of H nor the mass 

of Cl, rather the mass the reduced mass, 
1

𝜇
=

1

𝑚𝐻
+

1

𝑚𝐶𝑙
  . So, −

ℏ2

2𝜇
∇2, this gives you the kinetic 

energy, 
1

2
𝜅𝑥2 as we have discussed already is the potential energy of the hamiltonian. 

So, the Hamiltonian is there, we have done the equation, one can solve it. So, the boundary 

condition that we have to use here. Remember, it is boundary condition that produces your 

quantization. So, the boundary condition that we have to use here ψ=0 at x= ±∞, not at the 

surface, not at the surface. 

What is the surface? You just plot it this parabolic potential for this value of x what is the value 

of V , there is no reason to think that at this point the wavefunction will become 0, it becomes 

0 at x= ±∞,. So, using that boundary condition what you get is first of all you get quantization, 

you get different energy levels and you get this kind of wave function. 

Do they look like particle in a box wave functions? Partially, yes, they do look like sin wave 

site and even particle wave function, particle in a box wave function, you had no node for the 

lowest energy, one node in the next one, two in the next and so on and so forth. But these are 

not sin waves. So, these are something like this, let me just write it here 𝜓𝑣 = 𝑁𝑣𝑒
−𝜅𝑥2for now 

just write k, and here I will just write k x2 since we are just trying to give you an idea, this is a 

Gaussian function and this is multiplied by what is called a harmonic polynomial in x. 



What is a harmonic polynomial? Please refer to our lecture series, we are not going to deal 

further here. Unfortunately, in this course, you have to believe me when I say that this is the 

form and when you plot this, this kind of a function is obtained it becomes 0 only at plus minus 

infinity. So, you can see some wave function outside the area, that where we have drawn the 

potential energy surface also. This is the quantum mechanical description of simple harmonic 

oscillator. Quantization is there, wave functions are there, the only thing that remains to be told 

at this point is what is the expression for the energies. 
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This is the expression for energies 𝐸𝑣 = (𝑣 +
1

2
)ℏω, ℏ you know h/ 2π, omega(ω) is the angular 

frequency of vibration, ν is the vibrational quantum number goes from 0, 1, 2, 3 so on and so 

forth. Now, we have an interesting situation, if you put ν = 0, what is Ev going to be? It will 

not be 0. It is going to be 
1

2
ℏω. 

So, this energy is called zero-point energy, what it essentially says is if it was a classical simple 

harmonic oscillator, it would have gone down here to the bottom of the well and it could have 

had no energy at all, which means it would not vibrate. However, for a quantum harmonic 

oscillator, it is not possible to have zero energy, the oscillator is going to oscillate even at zero 

Kelvin, that is why it is called zero-point energy. 

Why is it so? That is so, because otherwise you know uncertainty principle will be violated. 

So, we have a quantum harmonic oscillator, fine. So, it is vibrating, let us say I keep on 

decreasing temperature and it stops, it drops to the lowest possible level, vibration energy goes 



down, down, down and then it stops. Now, we know the separation r0 that means, you know 

position, we know the momentum exactly it is 0. 

So, position and momentum are both determined accurately that violates uncertainty principle. 

So, in order to ensure that it does not violate uncertainty principle, poor quantum harmonic 

oscillator has to oscillate even at 0 Kelvin with Zero-point energy. In fact, at room temperature 

only this level is populated because the separation is something like 1000 cm-1. 

If you use Boltzmann distribution, you will find that population of this, even your v = 1 state 

is going to be 0.008 or something, only 8 will be equal to 1 state and it will fall off rapidly. So, 

if ratio is 1000 to 8, what will the ratio 8 is to something v, it will be practically 0. So, only the 

v = 0 level is populated at ground state for all practical purposes, so all transitions originated 

from that. That is very important to understand. That being said, there is more interesting stuff 

coming up. 

We know that angular frequency(ω) for a simple harmonic oscillator is ω = √
𝑘

𝜇
, k is force 

constant, and μ is reduced mass. So, if we can somehow determine omega, then we should be 

able to determine force constant, provided I know which atoms I am working with, if I know 

which atoms I am working with, I know the masses. How do I find this? Let us see, what is the 

energy gap between two successive levels, Ev+1 – Ev, then do the math very simply, write v +1 

here, v and v will cancel, 1- ½ = ½ . 

So, you are left with ℏω. So, sorry, ½  will also cancel. Since I made a mistake, I will write it  

𝐸𝑣+1 = (𝑣 + 1 +
1

2
)ℏω So, if Ev+1 – Ev, is = ℏω , well v and v cancel, half and half cancel, you 

are left with h cross omega. What is this omega? Remember, it is angular frequency of 

vibration. And if you think why I am saying this again you will see very soon why, angular 

frequency of vibration. 

So, instead of writing ℏω, I can write hω/2π . Fair enough? What is ω/2π  ? ω/2π  is ν. So, this 

becomes Ev+1 – Ev = hν. What is ν? ν is the frequency of vibration. I might as well write like 

this. But now, we are in an interesting situation. What is there on the left-hand side? Ev+1 – Ev 

that is ΔE. 

You remember what ΔE is, we had written that it is called Bohr resonance condition, that is = 

hνlight. So, it turns out is that this hνlight = hνvib, h and h cancel, we are left with νlight =νvib, 

vibration. So, a simple harmonic oscillator would absorb only that light. Well, for Δv = 1 kind 



of transition, which is the only transition that is allowed is going to absorb that light whose 

frequency is exactly equal to the vibrational frequency, that is something that I find to be very 

amusing. 

So, you can write like this vibrational frequency as 
1

2𝜋
√
𝑘

𝜇
 we know that. So that is equal to 

frequency of light as well. And it is conventional in vibrational spectroscopy, like in rotational 

spectroscopy, to work with not frequency but wave number. So, 𝜈̅ =
1

2𝜋𝑐
√
𝑘

𝜇
. So, this here is an 

expression of light that would be absorbed for a v to v+1 transition. And that has k in the 

numerator, μ in the denominator. 

If you know μ, you can easily find the force constant k. What would the force constant k tell 

us about? It tells us about how strong the bond is. So, it can determine bond strength. What 

would the spectrum look like? Actually, it would look like this one single line. Of course, there 

would be some width and all. But for Δv = 1, even if the transition is originated earlier, it does 

not matter. 

It will always be just hνvib. So, a single line is expected in the spectrum of simple harmonic 

oscillator more so because in any case, all transitions begin from v = 0 at room temperature. 

The selection rule is Δv = 1. How do we get it? Please refer to our spectroscopy lectures. 
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As usual, we will not close the discussion without showing you an actual spectrum. This is the 

expectation. One single line, this is the reality, if you use a good enough IR spectrometer, a 

high-resolution IR spectrometer, instead of one band you get well two branches of lines. Where 

do these branches arise from? These branches arise from the fact that every vibrational level is 

associated with rotational levels. 

Now, you might remember here that we said that rotational levels are such that the higher levels 

are populated, why are they populated because the energy gap is so small, higher vibrational 

levels are not populated. Here, we have written n this is not populated much because the energy 

gap is too large, but for n = 0 all these levels will be populated in the same ratio as is predicted 

by Boltzmann distribution. 

So, now upward transitions can begin from any of these levels. So, you get arrows of different 

length and without going into further detail, let us just believe this again that the selection rules 

are Δv = 1 and ΔJ = ±1. Meaning if you start from a J value, let us say J = 3. So, from here, 

you will be able to go to only particular J values associated with the v = 1 level. 

Now, I recommend that you work out the expression of energies associated with this kind of 

transition from Banwell and McCash’s book, I am not doing it here because it is very, very 

simple algebra. For those who are going to take this as an NPTEL course, if you want, we can 

do it in the interactive session. Others, if there is any problem, please write me an email or 

something and we will do it. 

So, we get two lines, these are called the P branch and the R branch. And you might notice that 

there is nothing at the center where the line was expected to be. That is because you have Δv = 



1 and ΔJ = ±1, ΔJ is = 0 is not there. That is why you get this kind of an expression, and this 

is kind of a line. 

So, from one spectrum, if your spectrometer is good enough, you can get an idea of IR which 

gives you an idea of bond strength, as well as you can get an idea of separation of rotational 

levels, the separation is going to be 2B once again. So, you can get an idea of bond length and 

bond strength from the same experiment. If your IR spectrometer has high enough resolution. 

There is one more thing, if you zoom into one of these lines, unfortunately, it is flipped here 

for whatever reason, you see that each line is actually a doublet, there are two lines associated 

with it. Why? Go back to class 8 level chemistry. Remember, chlorine occurs in nature as two 

isotopes chlorine 35 and chlorine 37, atomic rate of 35.5 is just an average. So, when you do 

the experiment, you actually sample individual molecules. 

So, they are either HCl with chlorine 35 or HCl with chlorine 37. And here, you get two 

different lines for chlorine 37 and chlorine 35. The isotope effect shows up very, very nicely 

in this high resolution, what is called ro-vibrational spectrum as well.  

So, we get an idea of isotope abundance, relative abundance of isotope, we get an idea of 

relative abundance of isotopes as well from high resolution IR spectra, which are often called 

ro-vibrational spectrum, rotation vibration, so ro-vibrational spectrum, so much for vibration 

and rotation. Next, we are going to go into electronic spectroscopy. 


