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Hückel’s MOT for Butadiene-II 

Now, we are going to discuss the wave functions of butadiene and we will see how we can arrive 

at some important information about the molecule from a knowledge of these wave functions.  
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What you see here is an example of one of the functions that we are going to encounter in a few 

minutes. 
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But before that, this is where we are. We have worked out the Huckel MOT formulation for 

butadiene. We have expressed the π molecular orbital as a linear sum of these four p orbitals on 

the four carbon atoms. And in the secular equation, what we have done is, we have said that 

equivalent carbon atoms have Hii equal to Hjj equal to α and we have set that α to 0 and we make 

all the measurements from there, because, essentially, that denotes the energy of a pz electron in 

the molecular framework.  

We have said that this Hij and Hji they are equal to resonance integral when, only when i and j are 

adjacent to each other, so 1 and 2, 2 and 3, 3 and 4, no other combination. For all of the 

combinations, we set them to be equal to 0. And we have discussed why we are justified in doing 

that. And the overlap is set to 0 in all cases, because we are talking about a π overlap anyway, 

which is not all that strong. It is a fairly weak. 
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And then, we have simplified it a little bit. And we have written the determinant in terms of β. x is 

essentially energy in terms of β setting α to be equal to 0. That is how we can read it. And we have 

found some values of x. From there, we constructed the energy diagram. Once we know this energy 

diagram, from our knowledge of ethylene, we know that we can now plug this expression for 

energy back in the four linear equations that we had for the molecular orbitals and we can 

determine the coefficients.  

We can, but will not do here because it is a little tedious. Whoever is interested is welcome to give 

it a try. It will take a little time, but you can do it, now that you know ethylene anyway. I am just 

going to show you the results. 
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And these are the results. These are the energy levels, E1, E2, E3, E4. Actually, in hindsight, I should 

have written them, E roman I, roman II, roman III, roman IV, because I have denoted the wave 

functions by ΨI, ΨII, ΨIII, ΨIV, where I, II, III, IV are in roman numerals. This is just to differentiate 

the label for the molecular orbitals from the label of the atomic orbitals that participate in the linear 

combination or you can think labels of the atoms themselves. So, these are the coefficients that 

come out. 

And once you look at the coefficient, you see this nice symmetry that was there in the secular 

determinant sort of reflected here as well. Modulus of the coefficient is just 0.3717 or 0.6015. And 



they just keep changing places. You always have two 0.3717s and two 0.6015s as coefficients, no 

matter which molecular orbital you take. It is just that, in the first one all of these coefficients have 

positive sign, in the other three two of them have positive sign, whereas two of them have negative 

sign, very nice, symmetric permutation combination kind of heavy situation. 

So, now what we will do is we will draw the sort of cartoon representation. What we have drawn 

here is also a cartoon representation, a cartoon representation of these MOs. Here, you see, we 

have drawn χ1, χ2, χ3, χ4 as orbitals with the same height, because they are all independent p orbitals. 

Now, we are going to multiply their height by the coefficient. So, now the heights are going to 

change.  

So, in ΨI, for example, the height of χ1 will be little more than half of the height of χ2. Height of χ2 

and χ3 will be same, because both have coefficients 0.6015. Height of χ4 is going to be same as 

height of χ1, and once again, little more than half of the heights of χ2 and χ3. So, this is your χ1. 

That is how we have drawn it. Of course, this is all approximate cartoon depiction. But we 

understand this very nicely.  

And also, another thing that I have done here is since we have minus signs coming up later on, I 

have drawn two loops in two different colors. One of them is plus one of them is minus. Which 

one is plus which one is minus, I do not know and I do not care as long as we decide that solid 

ellipses are plus and empty, hollow ellipses are minus or the other way around as long as we stick 

to one convention throughout we are good. 

Now, let us think of what will happen for ΨII. In ΨII the magnitudes are going to just get reversed, 

because now χ1 is multiplied by 0.6015, χ2 is multiplied by 0.3717. So, obviously, this χ1 orbital 

will be bigger, χ2 orbital will be smaller. Remember, when I say χ1 orbital will be bigger or smaller, 

I mean actually χ1 multiplied by coefficient.  

One more thing will happen and that is we have two minus signs here. So, if I have taken it like 

this, for χ3 and χ4 I should have hollow lopes at the top and solid ropes at the bottom. So, this is 

your χ2. I hope this is clear. Not difficult at all. What about χ3? I encourage you to work out chi 3 

yourself before going to the next step.  

Well, first of all, we have alternate plus and minus signs and magnitude is more or less similar to 

χ2, but signs are going to reverse not exactly alternatively between I and II and between III and IV. 



There is no sign change between II and III. This is χ3 and this is χ4. There is a sign change after 

every atom. And when I say sign change, of course, we know that we are talking about nodes. 

So, let us try and draw some nodes. One node is there already. The molecular plane itself is a node 

that comes from the basic properties of the p orbitals anyway. In addition, some nodes arise. Is 

there any node other than the molecular plane in ΨI? Not really, no node. What about ΨII? Do you 

have a node in ΨII? Yes, we do. There is a node. That is for the sign changes.  

What about ΨIII? We have two nodes. Here between I and II and here between III and IV. Between 

II and III there is no node. And if you are a little sorry that there is no node between II and III, 

well, our wish is fulfilled in the last one and we have a node between any pair of neighboring 

carbon atoms and that is why your signs keep on changing every time. We have drawn the wave 

functions. This is how it is drawn. And once you understand this, things like benzene should 

become cakewalk. 

Now, let us see, can we get some idea about things like charge distribution? Can we get some idea 

about things like bond order from these coefficients from these orbitals? 
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So, first thing to remember is that if I sum over the, what am I summing over, n is carbon atom, so 

I am summing from left to right. If I sum from and here, I made a mistake, because n should be 

from, not roman I to roman IV, because roman I to roman IV, remember, is actually the designator 

for MO and not atom. So, this is 1 to 4. So, when we sum over all the atoms, then I should get 1, 

when I sum the square of coefficients. Why, that is the normalization condition, is not it? Because 

remember, it safe to write here, it is safe to write here I think. 

This condition we have made sure that it is always fulfill. It is a ⟨𝛹𝐼|𝛹𝐼⟩ = 1 What does that mean? 

It means that (0.3717)2 , I will just write it once, ⟨𝜒1|𝜒1⟩. Before going any further, what is this 

integral? This is equal to 1, because, 𝜒1, 𝜒2 these are all normalized by themselves plus what is 

the second term, second term I can write something like this 0.3717 ×0.6015 ⟨𝜒1|𝜒2⟩ multiplied 

by integral 𝜒1, 𝜒2, normalizing remember.  

So, I have to integrate over all space. This, what is this? We have said that the overlap integral is 

equal to 0 in Hückel treatment. So, this is equal to 0. So, the only things have to, with that we have 

to worry about are ⟨𝜒1|𝜒1⟩, ⟨𝜒2|𝜒2⟩, ⟨𝜒3|𝜒3⟩, ⟨𝜒4|𝜒4⟩. So, that is what it is. So, and these integrals 

are 1 anyway.  

So, essentially, what you get is (0.3717)2 + (0.6015)2, and again, you have (0.6015)2 and (0.3717)2, 

so I can just write 2 [(0.3717)2 + (0.6015)2] =1. And you can see that that is actually the case. So, 

we have written these in normalized form. I keep this because this is something that is going to 

come handy right now. So, that is a first thing that comes from normalization condition. 



Now, let us think about charge distribution. What is the meaning of charge distribution? If I think 

of a particular carbon atom, the π electronic charge on it is given by ∑ 𝑛𝑖𝐶𝑖𝑛
𝐼𝑉
𝐼=0

2, where ni is the 

number of electrons in the i th MO and here again I should write i equal to roman I to roman IV, 

𝑛𝑖𝐶𝑖𝑛
2. What does this actually mean? Well square of coefficient is the contribution of that orbital 

and ni is the number of electrons in it.  

So, what is the number of electrons in 𝛹𝐼, it is 2. What is the number of electrons in 𝛹𝐼𝐼, it is 2, 

once again. What is the number of electrons and 𝛹𝐼𝐼𝐼 and 𝛹𝐼𝑉 , 0. This is what we have drawn 

earlier. So, that is what we have to find. That will give us the total pi electronic charge on nth atom. 

We can work with the first atom. 

Let us work out what it is for the first atom. What will it be, 2 [(0.3717)2 + (0.6015)2], that we 

know already that that is equal to 1. You can, it is just plain arithmetic, you can do it. So, it does 

not matter which n you take, does not matter which atom you take 1, 2, 3 or 4. When I say 1, 2, 3 

or 4, I mean, these, these 𝜒1, 𝜒2, 𝜒3, 𝜒4 . 

So, it does not matter which atom you take. π electronic charge is always 1, which means that the 

charge, the electrons are distributed uniformly across the molecule. So, this is a result that we know 

is correct. So, it is good that we have arrived at that. So, when we drew that valance bond 

theoretical picture, we had some charge separation. Does that mean that the charge density on 

electron number, carbon number 1 or number 4 is any different, not really?  

The average value still comes out to be same. But here we get very elegantly the idea that we have 

uniform distribution of π electron, a situation that is sort of analogous to dihydrogen H2, not HF. 

In HF you do not have a uniform distribution of electrons. Here, we have a uniform distribution of 

π electrons like the uniform distribution of σ electrons in dihydrogen that is what we see.  
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Another thing that we can work out is bond order from the coefficients. So, this cir × cis gives you 

the π electron charge in the ith MO between adjacent atoms r and s. So, if I multiply 0.3717 by 

0.6015 then I get an idea of pi electron charge density between 1 and 2. And the bond order is 

given by this, this product cir cis× ni, where ni is the number of electrons in the ith MO, sum over i 

equal to 1 to 4. So, let us try to do that. 

What is 𝑃12
𝜋 , what do I multiply by 2cI1, c12, 0.3717 and 0.6015 plus 2cII1 cII2. What are these 2s? 

These 2s are the number of electrons, ni, and these are the coefficients for 1 and 2 that we get from 

orbital 1 and orbital 2. So, essentially 0.3717, 0.6015, 0.6015, 0.3717 and the product is added.  

So, basically that gets multiplied by 4 actually, because 1, 2 comes from here and there are two 

such terms. The answer that you get is 0.8942, π bond order between 1 and 2, carbon 1 and carbon 

2 is 0.8942. In fact, when I do the calculation, I get 0.8943. But I have gone with the value given 

in the book. 

What about 2 and 3? Similarly, using the coefficients, this time which coefficients will use 0.6015, 

0.6015, 0.3717 , -0.3717. Please remember that. It is not + 0.3717. When you multiply a positive 

quantity by a negative quantity, you get a negative quantity. So, you do that, 2 cI2cI3+ 2cII2cII3, then 

you get 0.4473. What is P34? By symmetry, it is the same as P12, 0.8942. 

So, what is the total bond order that we get approximately? 0.9 + 0.9 is 1.8 +0.4 is a little more 

than 2, is not it? Well, but that comes because we have done the calculation this way. You will not 



get whole numbers here, because remember, the stabilization of bonding, destabilization of anti-

boding these are also not exactly the same. So, we get approximately total bond order that is similar 

to what we get from valance bond theory. 

But the more important picture that we get here is that the π bond order between 1 and 2, and 3 

and 4 is about double the π bond order between 2 and 3. And that is what we expect from valence 

bond theory resonance picture as well, because in order to get the double bond between 2 and 3, 

you need to charge separation, which is not such a happy situation. So, we get a similar picture 

than what we could have got from valence bond theory. The good thing is we get it in a more 

mathematically rigorous way using Hückel approximation that can easily be extrapolated to bigger 

molecules, like this naphthalene. 
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In naphthalene the problem is that it is too larger molecule, the determinant is huge. So, what we 

do there is that we use symmetry to factorize the determinant and we get expressions like this. 

These Ψ1, Ψ2, Ψ3, these are the p orbitals. And from there, one can work out the energy levels and 

you can work out, these are the wave functions anyway. What you see here, B3g, Au, so on and so 

forth these are, let us for now just say that these are the symmetry levels of these orbitals that are 

involved there. So, that opens up an entirely new angle altogether. 

What we learn from there is that, using symmetry you can simplify quantum mechanical problems 

to a very great deal. Have we done that in a small way already actually? We have. Remember what 



we said, we said that 𝑃34
𝜋 is equal to 𝑃12

𝜋  by symmetry. So, this is just the tip of the iceberg. It is a 

hint that symmetry has an important role to play whenever we try to do a quantum mechanical 

treatment of these big molecules. But let that be the story for another day.  

Today, we have learned that in butadiene using Hückel theory we can work out the energies, we 

can work out the wave functions, and from the wave functions, we can work out the electron 

distribution and it turns out that electron is distributed uniformly over the molecule. And also we 

can work out the bond order. When you go to bigger molecules like benzene and all similar 

treatment is extended. 


