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Molecular Orbital Theory 2: Diatomic Molecules 

In this lecture, we are going to complete our discussion of molecular orbital theory of H2
+ 

dihydrogen cation. 
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So far, we have written down the Hamiltonian. And the reason why you are working with H2
+ as 

we have said several times already is that, it is a unique case of a 1 electron molecule. So, here 

we have − 
ℏ2

2𝑚𝑒
 , there is a kinetic energy term of this lone electron.  −𝑄

𝑒2

𝑟𝐴
− 𝑄

𝑒2

𝑟𝐵
 , these are the 

potential energy terms for the attraction of this electron by the 2 nuclei. And, where capital R is 

the inter-nuclear separation is the term in the Hamiltonian operator for inter nuclear repulsion. 

So, we have formulated Schrodinger equation this way. And we have said that, we are going to 

construct the molecular orbital, not by solving Schrodinger equation directly even though it is 

possible, we are going to construct it by a, rather unique technique by taking a linear combination 

of atomic orbitals. 
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And when we do that, this is where we are, we made a little bit of progress identified a something 

called an overlap integral, integral 1sA 1sB overall space. And we have got two wave functions, 

𝜓1 =
1

√(2+2𝑆)
(ϕ1𝑠𝐴

+ ϕ1𝑠𝐵
) and 𝜓2 =

1

√(2−2𝑆)
(ϕ1𝑠𝐴

−  ϕ1𝑠𝐵
). We have plotted the electron 

distribution, these are the contour diagrams, and these are the profiles that you take through this 

two. 

And from these, we have said that it is quite obvious that in this case, in the upper case, that is 

where you have a buildup of electron density between the 2 nuclei, that is going to lead to 

stabilization. And here you have a depletion of electron density, if you take square of this, between 

A and B that is going to, that is going to contribute to increased inter nuclear repulsion. So, this 

will be a higher energetic state. 

So, this here is called bonding situation, bonding lowers energy. And this here is called anti-

bonding situation, anti-bonding orbital. Why because there is an increase in energy compared to 

isolated atoms. If there was no change in energy, we would have called it nonbonding orbital. 
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So, let me write the expression like this, 𝐸1 = ⟨𝜓1|𝐻̂|𝜓1⟩. So, if you expand this, and again, the 

way to do this is, once I write this, please stop the video, do the expansion yourself, it is elementary. 

And then when you reach a point where you get some strange looking quantities, then you should 

turn the video back on. 

So, this is what we have, we have replaced 𝜓1 by 
1

√(2+2𝑆)
(ϕ1𝑠𝐴

+ ϕ1𝑠𝐵
) in the bra vector as well 

as the ket vector. Of course, I can take the constants out and I will get 
1

2+2𝑆
. So that is sorted. Inside, 

we have this wave function, 𝐻 ⏞ wave function integrated over all space. Expand it, you are going 

to get four terms 
1

(2+2𝑆)
[⟨ϕ1𝑠𝐴

|𝐻̂|ϕ1𝑠𝐴
⟩ + ⟨ϕ1𝑠𝐵

|𝐻̂|ϕ1𝑠𝐵
⟩ − ⟨ϕ1𝑠𝐴

|𝐻̂|ϕ1𝑠𝐵
⟩ − ⟨ϕ1𝑠𝐵

|𝐻̂|ϕ1𝑠𝐴
⟩]. 

And now, we have to expand these terms and write them in some way that we can understand. 

Similarly, we can write an expression for E2. The only difference between E1 and E2 is that for the 

last two terms, in E2 the signs are negative, whereas the signs are positive for all terms for E1, that 

is the only difference, terms are actually all the same. 
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So, let us try to evaluate this one by one slowly. This is where we are right now, we have got the 

wave function, we have got an expression for the expectation values of energy for bonding as well 

as anti-bonding situation. 
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Let us work with the energy of the bonding orbital and let us try to expand this a little bit. While 

doing that. Since we do not know what these integrals are, we are going to define them, we are 



going to give them some name, that is the best we can do at the moment. Because see, as I said, 

1sA is not really eigen function of 𝐻̂. 

So, you cannot just write E0 and bring it out that is not going to work. So, what we say is whenever 

we have the same orbital before and after in the bra vector and ket vector, we call that integral Hii, 

or Hjj both are actually the same. It does not matter because both are 1s orbitals.  

When we have say 1sA in the bra vector, and 1sB in the ket vector or the other way around, we call 

it Hij. Now, Hij is equal to Hji that comes from the property of the Hermitian operators, there is 

something called turnover rule, where if you have something like ⟨ϕ1|𝐻̂|ϕ2⟩, you might as well 

write ⟨ϕ2|𝐻̂|ϕ1⟩,  does not matter, it is all the same. For this course, we are going to take it 

axiomatically. 

And the last thing that we know already is the overlap integral, that in any case is very easy to 

understand. So, we are going to write the expression for energy in terms of these integrals now. 

What is the first one, ⟨ϕ1𝑠𝐴
|𝐻̂|ϕ1𝑠𝐴

⟩ that is HAA or H11 or Hii whatever we want to call it. What 

about the second one, that is also going to be Hii. Because we have the same 1sB in the bra vector 

and ket vector. The last two terms are going to be Hij or H12 or HAB, whatever we want to call it. 

Because, there we have, if we have A in the bra vector, we have B in the ket vector, if we have B 

in the bra vector, we have A in the ket vector. So, this is what we get. 2 in the numerator and 2 in 

the denominator cancel each other, you are left with this expression 
𝐻𝑖𝑖+𝐻𝑗𝑗

[1+𝑆𝑖𝑗]
. And I hope it is not 

very difficult to understand that for E2, we will get more or less the same expression except for the 

fact that instead of plus sign, we are going to get minus sign. 

Please work it out yourself and satisfy yourself then there is a case. What is the next task at hand, 

we should try to evaluate Hii and Hij, we should try to simplify their expressions in terms of some 

things that we know. 
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So let us do that. To evaluate it, we will write down the expression for the Hamiltonian. Now, 

when I do that, I can take these first two terms in bracket, isn't it essentially a 1 electron 

Hamiltonian? So, we are going to write it as 𝐻̂1𝑒 

So, now our Hamiltonian 𝐻̂ = 𝐻̂1𝑒  − 𝑄
𝑒2

𝑟𝑗
+ 𝑄

𝑒2

𝑅
  And remember by Born Oppenheimer 

approximation, this last term is essentially a constant. So, this is what it is. 

So, 𝐻𝑖𝑖 = ⟨ϕ1𝑠𝑖
|𝐻̂|ϕ1𝑠𝑖

⟩, we are going to put this expression for the Hamiltonian in the expression 

for Hii and obviously, we will get 3 terms in that case, we will get a sum of 3 integrals, these are 

what they are. 
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Let me just write it like this, it will need some space to write more things as well. Hii turns out to 

be < 𝜙1𝑠𝑖
 here instead of A and B, I am just writing i and j more general coefficient, more general 

notations. ⟨ϕ1𝑠𝑖
|𝐻1𝑒̂|ϕ1𝑠𝑖

⟩, now this is something nice. Remember, this ϕ1𝑠𝑖
 is 1s orbital and what 

is the 1 electron Hamiltonian. Now, the 1s orbital is going to be an eigenfunction of 1 electron 

Hamiltonian. So, energy of 1s orbital is actually going to come out, so this first one is very simple 

to work out. 

What about the second one, what about the third one, we will see. Even in the second one you can 

see that 
1

𝑅
 is constant, so that can come out. Third one that is more interesting. So, this is how we 

write it now. First, we take this constant out it becomes 𝑄
𝑒2

𝑅
⟨ϕ

1𝑠𝑖
|ϕ

1𝑠𝑖
⟩ . Now, we know that that 

is equal to 1, we are working with normalized S orbitals, that is great. 

Now, what we do not know is the third one, first one I already said, I do not know I have not 

written it yet. But it will come also. In the first one I think you will understand what will happen, 

energy of 1S orbital is going to come out inside you are going to be left with ⟨ϕ
1𝑠𝑖

|ϕ
1𝑠𝑖

⟩ which is 

going to be 1 and so this will simply become, the first term will simply become energy of 1S 

orbital. Second term is 𝑄
𝑒2

𝑆
. 



No, just 𝑄
𝑒2

𝑅
 , no capital S. Third term is −𝑄𝑒2 ⟨ϕ1𝑠𝑖

|
1

𝑟𝑗
|ϕ1𝑠𝑖

⟩. What is this, this is called an 

integral J, the name is Coulomb integral. When you say Coulomb, what do you think? Which field 

of physics would you think of if I took the name of Coulomb, electrostatics. 

So, this Coulomb integral has got to do with electrostatics as well. See, what do I have in the 

numerator, I have 1s2, ϕ1𝑠
2  , what is ϕ1𝑠

2   remember, that is the energy density right. So, inside the 

integral I essentially have ϕ1𝑠
2  I will write i also and here it is 

ϕ1𝑠𝑖
2

𝑟𝑗
. So, if I draw it like this, this is 

the 1s orbital I am talking about if this is i, and the distance I am talking about is this rj. 

So, what is this, if I just multiplied by electronic charge that gives me charge of this electron cloud. 

This square is essentially your probability density, probability density multiplied by charge gives 

you charge density. So, in the numerator, if you just want to play by e, which is just a constant, 

that is a measure of, that is your charge density. So, we have a charge density at a separation of rj 

from the second nucleus. 

So, this essentially then gives me well one term gives me, for a particular value of rj the potential 

for electrostatic attraction between the second nucleus and the electron cloud around the first 

nucleus. Similar treatment is encountered, if you want to talk about say, electrolyte solutions, 

electrolyte solutions, what we do is we take say a positive ion, cation and we take the ionic 

atmosphere to be a delocalized negative charge to keep charge balance. 

So, similar treatment is there as well, you consider the electrostatic attraction between this point 

positive charge and this negatively charged cloud, ionic atmosphere, same thing here. And you are 

integrating overall space. So, that will give you the total potential energy for electrostatic attraction 

between 1 nucleus and the electron charge cloud, electron cloud on the, near the other nucleus. So, 

it has a physical meaning. J => Coulomb integral talks about an electrostatic interaction. 

So, let us write the expression for Hii now, the first term is E1S as we said, second time is 𝑄
𝑒2

𝑅
, third 

time is −𝑄𝑒2. 𝑗. We have got Hii already. Why do we want Hii, because Hii appears in the expression 

for energies E1 and E2. 
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What is the next integral Hij, Hij is a little more interesting. Why, because unlike Hii, you have 1s 

orbital in the bra vector, different s orbital in the ket vector. And you might as well start guessing 

what, which quantity, which integral we are going to encounter in a similar like, in a situation like 

this. So, this is your Hij. Again, the first one there is no problem, we still get energy of 1s orbital. 

Second one once again your 
1

𝑅
 is a constant it comes out, but when 

1

𝑅
 goes out, what do you have 

inside the integral, ⟨ϕ
1𝑠𝑖

|ϕ
1𝑠𝑗

⟩. 

I hope by now we all recognize this integral, this integral is simply the overlap integral, Sij as we 

are putting it here more often, we just call it capital S. So, what is Hij, first term we have no 

problem. I do not know why I have written it in so many steps. Anyway, second term is 

𝑄
𝑒2

𝑅
⟨ϕ

1𝑠𝑖
|ϕ

1𝑠𝑗
⟩, third term is this integral, which is, which looks somewhat similar to the Coulomb 

integral but not exactly the same. We have 1s orbital in the bra vector, we have another s orbital 

in the ket vector. Remember here rj is not a constant. 

So, how you evaluate these integrals we will come to that. But let us write this expression. The 

first one what happens is you take the energy of 1s orbital out, no problem with that. But inside 

you are going to have ⟨ϕ
1𝑠𝑖

|ϕ
1𝑠𝑗

⟩ that is again your overlap integral. So first one will be energy of 



1s orbital multiplied by overlap integral that is the difference between Hii and Hij. Second one also 

is 
𝑄𝑒2

𝑅
𝑆 , overlap integral shows up in Hij, it did not show up in Hii or Hij. 

Now, in the third term again, we have an integral, which at the moment, we do not know what to 

do with, we will give it a name. It is, since the earlier integral was called j, we go alphabetically, 

and we call this K= ⟨ϕ1𝑠𝑖
|

1

𝑟𝑗
|ϕ1𝑠𝑗

⟩ . And there are textbooks in which they try to make sense of it. 

But I do not think it is a good idea. This is a purely quantum mechanical quantity, it is called an 

exchange integral or resonance in detail. So, this is what your expression is, it is very important to 

understand there is a purely quantum mechanical concept there is no classic analog. 

So, to say that when this electron is here, that is charged cloud interacting with the other nucleus 

and then when they change places, that gives extra energy all this is trying to extrapolate the 

classical logic too much into the quantum world, you cannot do it beyond an extent. So, please 

understand that it is a purely quantum mechanical concept, nobody knows to be honest, any 

classical analog for this, so let us not even try.  
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So, we have the expression for Hij, we have the expression for Hii, what will I do, we will now just 

put the expressions in the expressions for E1 and E2. And here I am going to go fast because it is 



so easy. I will just put everything in if you want to please pause and do it yourself, please do it 

yourself, then you will understand this is the expression for E1, this is the expression for E2. 

Now, look at the expression, what do we get, E1S is the energy of an isolated 1s orbital, what is 

𝑄𝑒2

𝑅
, you see this +

𝑄𝑒2

𝑅
  appears in both E1 and E2. So, that is essentially the inter nuclear repulsion 

between a and b. So, no matter what you do that inter nuclear repulsion term will be there and 

depending on capital R it will be large or small. If it is very far away capital R is large, the second 

term will be close to 0. If it is very close to each other, it will be very large, but it is going to 

increase. 

So, if I just consider the two terms, the first two terms then I can draw like this, this here is the 

energy of the 1s orbitals, both of these energies would increase to some value and this is going to 

be how much, this difference will be 
𝑄𝑒2

𝑅
 as you understand that this extent of destabilization is 

going to change depending on what is the value of R. Now, we have something interesting, the 

third term has a negative sign in both the cases but here in the numerator, we have J + K and in the 

denominator also we have 1+ S, here in the numerator we have J - K and in the denominator we 

have 1 - S. 

Now J, K, S these are integrals, we have already shown how S varies and S is definitely something 

that depends strongly on capital R. J and K can be evaluated not analytically, but numerically, 

meaning for different values of capital R, you can just put in all the values and by brute force you 

can calculate what will, what will that integral be by doing summation it is not very difficult to do 

if you know a little bit of computer programming, this is where computer programming comes in 

big time in chemistry. 
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So, this is what you get. For E+ or E1, you have a function that goes through a minimum. This is 

the energy remember of the bonding orbital, and here this is the energy of the antibonding orbital, 

which increases monotonically when you, when you decrease capital R from infinity to a very 

small value. This position or internuclear distance, where you get an energy minimum for E1 that 

is the inter nuclear bond distance. And you can look at these insets, so here this is a situation where 

the two nuclei are very far apart from each other, see what the energy is and you can work out 

what S is. 

When they are at internuclear this separation, this is what the wavefunction would look like, very 

strong reinforcement. And in case of the minus combination of the orbitals, this is the situation 

when they are very far away, it is still 0. When they are very close, say when they are at this 

equilibrium bond length. Now we have this destructive interference between the two wave 

functions and energy goes up to this value. 

And another point to note is that at equilibrium bond length stabilization of the bonding orbital is 

actually less in magnitude compared to the destabilization of the antibonding orbital, you can 

explain this qualitatively by talking about buildup of electron density and depletion of electron 

density between the two nuclei but only qualitatively. So, these are the energies of H2
+. 
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Now, the way we proceed, now is that we can just fill in electrons if we have more electrons here, 

that is how you handle H2 and other diatomic molecules, homonuclear diatomic molecules. But 

before that, this is an executive summary of what we have learned so far. 
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And another thing that I want to say here is that, this is what happens when you talk about 

hydrogen, if you want to talk about homonuclear diatomics like C2, N2, O2 and so on and so forth, 

you might need to, you will need to invoke the combination of not only 1s orbitals, but also 2s 



orbitals, 2p orbitals and so on and so forth, you can do it in exactly the same way and you can 

generate orbitals bonding and anti-bonding in this way. 
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So, I am going very quickly through this because it is not all that difficult for you to figure out. 

One thing that I would like to point out is that symmetry of these orbitals is, actually they have a 

role to play later on in many different things. So, let us note the symmetry. And let us note the 

symmetry using this linear combination of p orbitals, when there is π- bonding side on overlap, 

this is the kind of contour diagram that you generate. See here we have plus sign and here we have 

minus sign, sign of wave function just right beside it plus and minus and here we have a node. 

So, if you start from any point of the wave function, go through the center equal distance on the 

other side, you get a change in the sign of the wave function. So, this is called anti-symmetric with 

respect to inversion and the term for it is ungerade. So, these orbitals, these molecular orbitals 

come with the subscript u. So, this is called π𝑢 orbital, you can neglect this 1 for now. Why π, 

because it is a π interaction. If I go back to the orbitals, that we have drawn molecular orbitals, 

what does this orbital look like when you combine this 1s and 1s for the bonding situation it is 

something like this. 

The contour diagram would be something like this. Now, see it is plus everywhere, so if you go 

from 1 any point through the center equal distance to the other side, you get no inversion at all, no 

change in sign of a function. So, this is called a σg wave function, g for gerade, gerade and ungerade 

are German words. Well, gerade mean symmetric, ungerade means symmetric as far as we are 

concerned. 



Now, what about the antibonding orbital for the H2
+, there we take something like this, you have 

depletion. So, you have a node in between, this is the node. So, here the wavefunction is plus, here 

it is minus. Start from any point go through the center equal distance on the other side, you have 

inversion. So, this is called σu . Well, for now, let us say that this is σ, because it is σ interaction. 

And this one here is π, because you have π interaction, there is more to it, it comes from the 

symmetry notations we will not get into that in this course. 

But this is what we get for σ interaction involving s orbitals, this is what we get for π interaction 

involving p orbitals. So, the bonding orbital here. So, for sigma interaction involving 1s orbitals 

the bonding orbital has gerade symmetry, the anti-bonding orbital has ungerade symmetry. For π 

bonding with p orbitals, the bonding orbital actually is ungerade and anti-bonding orbital, you see, 

this is plus, this is minus, this is plus, this is minus. So antibonding orbital is actually gerade πg
*. 

And another thing that we often do is that, for antibonding orbitals we put star (*). Different books 

use different notations, but this is the notation that is used most universally star for anti-bonding, 

and gerade and ungerade to indicate whether they are symmetric or anti-symmetric with respect to 

inversion. 
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So, this is, in a nutshell, the symmetry of orbitals that we just discussed. 
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You can have different kinds of bonds, σ, π and 𝛿. σ is head on, π is with p orbitals this is π, with 

d orbitals this is π. No, with d orbitals this is π, of course, I do not have enough fingers to show 

you the 2 lobes at the bottom as well for the orbitals, these are the 2 lobes at the top, this interaction 

is p interaction. 

So once again, s orbitals, σ interaction, no π interaction possible. p orbitals, σ interaction, π 

interaction. d orbitals well, you can have σ interaction also. d orbitals you can have this kind of σ 

interaction or maybe I should show this kind of σ interaction, where is π interaction like this and 

this is 𝛿 interaction face on, head on, side on, face on. So, these are the different kinds of bonds. 

We will not discuss the symmetries of orbitals and all these in this course, but it is a good exercise 

for the students to work out by themselves. Now, what we have done so far is that, we have 

generated the alphabet by which we can discuss homonuclear diatomics in terms of molecular 

orbital theory, we have generated the molecular orbitals using the single electron, 1 electron 

molecule, that is H2
+. 
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Next, we are going to learn how we can fill in electrons into these same orbitals and how we can 

develop a molecular orbital theory of dihydrogen. 


