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Radial Distribution Function 

Now we are ready to plot some good-looking pictures of hydrogen atom wave functions that is, 

orbitals. We are used to drawing s orbitals like spheres. But what we will see today is that actually 

s orbitals look like this. How, let us see.  
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This is what we have done so far, we have written down the hydrogen atom Schrodinger equation 

in spherical polar coordinates. And we have been able to separate the equation into 3 different 

parts; the radial equation  
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gave us A, Φ(𝜙) = 𝐴𝑒±𝑖𝑚𝜙 = 
1

√2𝜋
 𝑒±𝑖𝑚𝜙, from where we got the magnetic quantum number 𝑚 =

 0, ±1, ±2, ±3, so on and so forth. 

And from the theta dependent part, we got the secondary quantum number 𝑙 =  0, 1, 2, 3, so on and 

so forth. Also, we have seen why it is that magnitude of m, |𝑚| ≤ 𝑙, we have learned how that 



comes, that comes from the requirement of Z component of angular momentum never being greater 

than the total angular momentum. 

Now, we have not solved the R and 𝜃 dependent parts, but we have told you what the wave 

functions look like, the 𝜃 dependent wave function is essentially a polynomial in cos 𝜃, 
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𝑚(𝑐𝑜𝑠𝜃)  with 𝛽 = 𝑙(𝑙 + 1), this is called a Legendre polynomial and 

the R dependent part essentially is a constant − [
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2𝑛[(𝑛+1)!]3]
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(
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𝑙+ 3 2⁄
 multiplied by 𝑟𝑙𝑒

−𝑍𝑟
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multiplied by a Lagrangian function, 𝐿𝑛+𝑙
2𝑙+1 (

2𝑍𝑟

𝑛𝑎
), which is a polynomial. 

And when we look at the solutions of radial part, you have not done it in detail, we have just told 

you the final results, we get the principal quantum number 𝑛 =  1, 2, 3, and so on, so forth. We 

also get to learn that 𝑙 < 𝑛. Now, what is the information about the molecule that we, about the 

atom that we get from these 3 different parts.  
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From the radial part we get to know the energy and the expression for energy is the same as what 

you get from Bohr theory, 𝐸𝑛 =  
−13.6 𝑒𝑉

𝑛2 . From the angular part, the theta part we get to know the 



total angular momentum 𝐿 = √𝑙(𝑙 + 1)ℏ, and from the phi dependent part we get the Z component 

of angular momentum 𝐿𝑧 = 𝑚ℏ and once again that is why |𝑚| ≤ 𝑙 .
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Now, what we often do is that we take the angular part together and we write this kind of an 

expression, 𝑌𝑙
𝑚(𝜃, 𝜙) = √

(2𝑙+1)

4𝜋

(𝑙−𝑚)!

(𝑙+𝑚)!
𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙, this is called spherical harmonics. And that 

turns out to be your, the theta part 𝑐𝑜𝑠𝜃 multiplied by the phi part 𝑒𝑖𝑚𝜙 . 
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So, what we will do is we look at radial and angular parts separately. We have already shown you 

the radial functions of hydrogen atom and we have reminded you that number of radial nodes is 

𝑛 − 𝑙 − 1. 
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We also remind ourselves that we have to talk about probability and not probability density. So, 

𝑅2𝑟2𝑑𝑟 essentially is radial probability distribution function, for s orbital this becomes 4𝜋𝑟2𝑅2𝑑𝑟, 

it is not very difficult to understand, I hope. 
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So, taking into account volume element, there is some radius, non zero radius where radial 

distribution function undergoes a maximum. 
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And we have briefly said that you can figure out the most probable value of radius and average 

value of radius and they are usually not the same. 
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Now, let us try plotting the orbitals in this kind of 3d pictures. In these three dimensions, what is 

it, y axis is the orbital, the other 2 axes can be x and y, y and z, x and z, whatever we require. So, 

see, actually this is a four-dimensional picture, psi is the fourth dimension, the spatial dimensions 

are 𝑟, 𝜃, 𝜙. or x, y, z whatever you want, but psi is a fourth dimension. 



How will I draw 4 dimensional picture, I cannot. So, I can only draw 3 dimensional sections and 

then we make contour plots of them. So, let us take the simplest case scenario, 1s orbital, where 

the radial part 𝑒
−𝑟

𝑎𝑜⁄  is the only part that is there in the wave function, exponential decay as we 

said. 

Now, when I plot it against r, remember if this is x and this is y what is r, 𝑟2 = 𝑥2 + 𝑦2. r is 

essentially equal to √𝑥2 + 𝑦2 , just like that. So, for any value of x and y, you have a value of r. 

So, this exponential decay that we draw, we can keep on changing x and y and what we will 

generate is this kind of a conical shape. 

So, what you see here is sort of a 3-dimensional picture. And you can see these lines here, these 

lines join all points with the same value of psi, you might remember that we had encountered these 

when talking about 2D and 3D box. Now, if I look down from the top, what will I see, I will only 

see these lines. So, this is a projection of these 3-dimensional object in 2-dimensional plane.  

So, these lines essentially join the, all the points having same psi. These are called contour 

diagrams. For 1s orbital of course, the contours are all circular. And one more thing to notice, see 

here, the spacing between contours is large in the outer part. Towards the center, the spacing 

between contours is small. Why, because the slope is more initially, it is not a straight line, slope 

is more initially and gradually it falls off. 

What is the meaning of slope, if I draw like this? This I called horizontal equivalent, and here now 

I am using language that is used in your survey maps. And this is called vertical interval, VI means 

vertical interval, HE is horizontal equivalent. So, slope is VI divided by HE. What will happen if 

slope is more, then for same HE, VI will be more, something like this. Or I can draw like this, I 

will take the same vertical interval, like this. 

So, you see when slope is more, then these 2 points are close, when slope is less these 2 points are 

far apart. So, wherever slope is less contour lines are far apart, wherever slope is more contour 

lines are close together. This is your 1s 3d picture, as well as contour diagram. 



(Refer Slide Time: 07:10) 

 

 

What about 2s? 2s has, Ψ2𝑠 = Ψ2,0,0 =
1

4(2𝜋)1 2⁄ (
𝑍

𝑎
)

3 2⁄

𝑟0 (2 −
𝑍𝑟

𝑎
) 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ), remember, 

𝑟𝑙 multiplied by that Lagrange function (2 −
𝑍𝑟

𝑎
) 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ). 𝑙 here is 0, so 𝑟0 is essentially 1, 

no problem with that. But the Laguerre polynomial not Lagrange function. Laguerre function is 

(2 −
𝑍𝑟

𝑎
), where 𝑎 is Bohr radius. Where does the radial node occur then? 𝑟 =

2𝑎

𝑍
 , that is why the 

function falls off becomes 0 at 𝑟 =
2𝑎

𝑍
 and changes signs. So, this is a nodal point. 



Remember, node is a point where a wave function goes to 0 and changes sign, if it does not change 

sign, then it is not a node. Then again, it increases and becomes 0 asymptotically. This is something 

that I plotted myself, so do not take this number seriously, these numbers are just relative and I 

encourage you to plot yourself. 

So, this is your 2s orbital. How does it look, if I try to make a similar 3 dimensional picture, all I 

have to do is I have to turn it around by 360 degrees with respect to the psi axis, this is what I get. 

Now see, this is the diagram that you get for 2s orbital, initially, very high value, it falls, crosses 0 

and becomes negative. Do you see the basin here, this is the negative basin, and then it slowly 

recovers and becomes 0 at infinite value of small 𝑟. 

This, these are the contour diagrams I had just taken this and turned it around. I have used Grapher 

to plot this in a MacBook, so it is very easy to do these things there. You can use whatever graph 

plotting software that you want. Turn around these are the contours, and once again see these lines 

are far apart, these lines keep on getting closer and closer and closer. Neglect this arrowhead, this 

is just an artifact from the program. I will show you another view, this is the top view. 

Well, this is a side view, this is the top view, this is the bottom view, if you look from the bottom, 

you see this hole, where does this hole come from, well wavefunction has started from a certain 

value, so at r equal to 0 value is very positive. But the minimum value is actually negative, that is 

what is determined by this rim, this is the contour line where you have negative. And do you see 

the radial node in the contour diagram, this whitish circle that you see that is your radial node. So, 

this is how orbitals are usually depicted. 
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Orbital remember is a 1 electron wave function. And of course, if I asked you to just draw it on 

plain paper, this is how you can draw it. How do you show sign here, you either write explicitly 

or use different colors for different signs.  
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This is another way in which are orbitals are often depicted, lots of dots with different color, color 

denotes sign, and density of dots denotes probability. So, the way this is done is that, you plot more 



dots where the probability density is more and when you look at the entire picture, you get the 

probability distribution. 
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Another way of drawing it this Pac Man kind of figure, I do not know what these diagrams are 

called. These diagrams are all drawn by my senior colleague Professor. Y. U Sasidhar, you see his 

name here. So, this is another way of drawing it, you cut a section of the orbital, you can show 

there is 1 sign outside, 1 sign inside, very nice depictions. 
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For 3s orbital,  Ψ3𝑠 = Ψ2,0,0 =
1

81(3𝜋)1 2⁄ (
𝑍

𝑎
)

3 2⁄
𝑟0 (27 − 18

𝑍𝑟

𝑎
+ 2

𝑍2𝑟2

𝑎2 ) 𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ ). 3s orbital as we 

said has a polynomial of second order (27 − 18
𝑍𝑟

𝑎
+ 2

𝑍2𝑟2

𝑎2 ). So naturally 2 roots. So, for 2 values 

of r, it becomes 0. And remember, these are Laguerre functions and property of Laguerre functions 

dictates that the roots are both real. Now, 2 nodes. 
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So, what will it look like, I do not have the 3d picture here, but the scatterplot looks like this. You 

can see there are 3 different regions, you can try to make the 3d plot yourself. 
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Now, another thing that I want to stress even though we have said earlier, see this here is the 3s 

orbital that we have plotted, the outermost slope is the smallest, when I multiply by smaller 𝑟, 𝑟2 

by, 𝑟2𝑅2 is your probability density actually you have to multiply it by 4𝜋.  

Now, see what has happened, since you have multiplied by r square, the outermost slope, which 

was the smallest has actually become the largest. So, where is the probability of finding 3s orbital, 

3s electron more outside in this major loop. So, these are probability distribution function plots. 
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Now, let us talk about p orbitals and d orbitals. So, this diagram that you see is actually of 3p 

orbital as we are going to arrive at slowly. 
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But first let us talk about 2p orbitals. We will start with the simplest one 2pz orbital.        

      𝑅2𝑝𝑎3 2⁄ = (1 2√6⁄ )𝑍5 2⁄ (𝑟 𝑎⁄ ) 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ). Here, (𝑟 𝑎⁄ ) 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ) is the radial part. See 

now, this time we have (𝑟 𝑎⁄ ) 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ). 𝑟 is an increasing function, 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ) is a 

decreasing function, multiply them together you get a maximum. And where does this maximum 



occur you can differentiate equal to 0, equate to 0, you can find out where the maximum, radial, 

maximum of the radial part of the wave function occurs.  

Remember, the position of maximum of the radial part of the wave function will not be the same 

as the position of the maximum of 𝑟2𝑅2. I encourage you to work out both and see for yourself 

whether it is same or whether they are different. This is the radial part, what about the angular 

part? Ψ2𝑝𝑧
= Ψ2,1,0 =

1

4√2𝜋
(

𝑍

𝑎
)

5 2⁄
𝑟1𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ )𝑐𝑜𝑠𝜃. The angular part has 𝑐𝑜𝑠𝜃. Now, 𝑐𝑜𝑠𝜃 =

𝑧/𝑟. 

 

So, instead of cos theta I can just write 𝑧/𝑟. So, r, this 𝑟1 and that r will cancel, and we will be left 

with 𝑒𝑥𝑝(−𝑍𝑟 2𝑎⁄ ) multiplied by Z. Interesting, that is why it is called a 2pz orbital. 

So now see, if I, I know how to get radial notes already, equate the radial part to 0. If I equate the 

angular part to 0, cos theta equal to 0, what is that, cos theta equal to 0 is Z equal to 0 that is the 

xy plane. So, xy plane turns out to be an angular node of the 2pz orbital. 
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So, that is why that 3d picture turns out to be like this. You start from 0, you get a positive going 

function, which then again decays to 0, negative going function that again decays to 0, but why is 

it positive, why is it negative, because see this y z plain must be, z x, what am I saying, x y plane 



must be a node. I am showing you the x z plane here. So, in this projection, remember here, the 

third axis is wave function. 

So, if third axis is function, where are you going to get this node, here it will be z equal to 0, this 

line. So, this is the meaning. So, these are the 2 lobes. Now, if you look down from the top what 

will you see, the contour diagram will look like this. 

Remember the 2 lobes of p orbital, these are your 2 lobes of 2p orbital. When we go to 3p orbital 

we will see the situation becomes even more interesting. So, this is what it is. 1 plus lobe, 1 minus 

lobe, what is plus, what is minus, electrons do not become positively charged when they go to the 

plus lobe, sign of the wavefunction is positive, sign of the wavefunction is negative in the negative 

lobe. 

So, plus and minus on the lobes denote the sign of the wavefunction and these lobes arise out of 

angular part. They have different signs because the angular plane, the angular node is essentially 

the y, x y plane. The angular node essentially is x y plane. 
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And these are the constant probability surface. How do you plot them? You decide what psi psi 

star you want. Join all the points having that same psi psi star. Now, this is 3d space. You join all 

the, so for some x y z value, I know that psi psi star is 0.002 let us say, I joined all those points and 

then I get this kind of shape. Now, I know where psi is plus, where psi is minus, so I can use 



different color or write plus or minus. Then, what I do is I work out the volume inside this, the 

volume inside that will be probability of finding the electron within that constant probability 

surface. 

Then, that is how you generate these pictures of probability distribution. And generally, people 

confuse that with orbitals, but hopefully after today, we will never confuse we will remember that 

orbitals are wave function and these shapes of probability distribution are generated using the 

functional forms of the orbitals, but not neglecting the spherical, (())(15:55) the volume element 

as well. 
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Now, now we come to an interesting situation. 2pz is something we could plot very easily. What 

about this 𝑚 = +1 and 𝑚 = −1? See here, ψ2,1,0 = ψ2𝑝𝑧
=

1

4√2𝜋
(

1

𝑎𝑜
)

3 2⁄
(

𝑟

𝑎𝑜
) 𝑒

−𝑟
2𝑎𝑜

⁄  𝑐𝑜𝑠𝜃, 

phi part was 1, because m equal to 0, phi part is 1. So, it is a real orbital. However, for 𝑚 = +1, 

ψ2,1,+1 = ψ2𝑝+1
=

1

8√2𝜋
(

1

𝑎𝑜
)

3 2⁄
(

𝑟

𝑎𝑜
) 𝑒

−𝑟
2𝑎𝑜

⁄  𝑠𝑖𝑛𝜃 𝑒𝑖𝜙 and 𝑚 = −1,                                                              

  ψ2,1,−1 = ψ2𝑝−1
=

1

8√2𝜋
(

1

𝑎𝑜
)

3 2⁄
(

𝑟

𝑎𝑜
) 𝑒

−𝑟
2𝑎𝑜

⁄  𝑠𝑖𝑛𝜃 𝑒−𝑖𝜙 we have orbitals that are imaginary, and we 

cannot draw them in real space, you can actually do whatever you want to do with them, but you 

cannot plot them. And in chemistry, we like to plot things; it is easier to understand. 

So, what we do is we remember a theorem. What is a theorem, that, we remember a theorem that 

the quantum mechanical operators are linear. So, if quantum mechanical operators are linear, then 

if I take a linear combination of wave functions, then what happens? I have poor memories I do 

not remember whether I work this out earlier. In any case, we will do it once. But I will write and 

I will delete also. So, see take some any operator 𝐴̂, let us say it operates on 𝑐1𝜙1 + 𝑐2𝜙2, where 

𝜙1  and 𝜙2 are wave functions, c1, c2 are coefficients. 

And let us say, also I think we did it, 𝐴̂𝜙1 =  𝑎1𝜙1 and 𝐴̂𝜙2 =  𝑎2𝜙2. So now, what is this, since 

the linear operator 𝐴̂(𝑐1𝜙1 + 𝑐2𝜙2), I can write it as 𝑐1𝐴̂𝜙1 + 𝑐2𝐴̂𝜙2 . What is 𝐴̂𝜙1 we know, what 

is 𝐴̂𝜙2 we know as well. So, I will write  𝑐1𝑎1𝜙1 +  𝑐2𝑎2𝜙2. Is this an eigenvalue equation, in the 



general case no. In a special case, where a1 is equal to a2 that is same eigenvalues, let us say both 

are equal to a, then I can take it out. I can write 𝑎(𝑐1𝜙1 + 𝑐2𝜙2). 

Now, see, look at this I will call them p plus p minus orbital. They are eigen functions of 

Hamiltonian operator and they are eigen functions with the same eigenvalue. Remember, energy 

depends only on n, only on the radial part. So, there is no problem I can take linear combination 

and whatever linear combination I take will have the same energy as these orbitals. So, I take two 

linear combinations. First, I add them, 
1

√2
(ψ2,1,+1 + ψ2,1,−1). What happens when I add 

𝑒𝑖𝜙 𝑎𝑛𝑑 𝑒−𝑖𝜙, remember 𝑒𝑖𝜙 is 𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙 and 𝑒−𝑖𝜙 is 𝑐𝑜𝑠𝜙 − 𝑖𝑠𝑖𝑛𝜙. So, when we add that this 

is what happens, 
1

√2
(ψ2,1,+1 + ψ2,1,−1) = 

1

√32𝜋
(

1

𝑎𝑜
)

3 2⁄

(
𝑟

𝑎𝑜
) 𝑒

−𝑟
2𝑎𝑜

⁄  𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙. You are left with 𝑐𝑜𝑠𝜙, 

the 𝑖𝑠𝑖𝑛𝜙 terms cancel each other. So, I got 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙. What happens, what is that, that is actually 

ψ2𝑝𝑥, why, because remember 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 is 𝑥. So, this 2𝑝𝑥 orbital now behaves like your z orbital. 

The only difference is, for 2𝑝𝑥 orbital, the angular node is the yz plane. Nice. 

What, what happens if you take a minus combination, 
1

𝑖√2
(ψ2,1,+1 − ψ2,1,−1), the only difference 

here is that now the cos phi terms will vanish, and sin phi terms will be there. They have i in their 

coefficient, so you have to divide by i also, this is root 2 multiplied by i, this is not root over i, 

please do not this is not very clear. 𝑖√2, that is what it is. So, then I get 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙is y 

remember, so this is your familiar ψ2𝑝𝑦  orbitals. 

So, remember that for 2px and 2py, for px and py orbitals, m values are not defined, we generate 

them by taking linear combinations of 𝑚 = +1 and 𝑚 = −1  orbitals. So, if m value is not defined, 

what is not defined is the z component of angular momentum. So, remember the particle in a box 

wave function, it was a linear sum of a wave function that denoted the linear motion in plus x 

direction and another one that denoted linear motion in minus x direction, it is sort of like that.  

+𝑚ℏ and −𝑛ℏ they are combined. So, z component of angular momentum is indeterminate. If you 

perform a measurement then you will see either 𝑧 = +1 or 𝑧 = −1.   But px and py orbitals, they 

are not eigen functions of the Lz operator, they are eigen functions of your energy, Hamiltonian 

operator and also angular momentum operator, L2. 
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Let us quickly talk about 3pz.   Ψ3𝑝𝑧
= (√2 81√𝜋⁄ )Z(𝑍 𝑎⁄ )3 2⁄ (𝑟1 𝑎⁄ ) (6 −

𝑍𝑟

𝑎
)  𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ )𝑐𝑜𝑠𝜃 

In 3pz, the complicating factor is a radial node, you have (6 −
𝑍𝑟

𝑎
) in the radial part. So, what 

happens if I equate that to 0, that gives me  

𝑅3𝑝 x 𝑎3 2⁄ =  (8 27√6⁄ )𝑍5 2⁄ (𝑟1 𝑎⁄ ) (1 −
𝑍𝑟

6𝑎
)  𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ ), a radial node that was not there for 2p 

orbitals. 
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So now, I will just show you how to draw an orbital. If I give you the function, the first thing to 

do is to draw the nodes, this radial node is going to be a circle in this section and angular node is 

going to be a line. Now, what I do is I draw any one of the lobes and you call it either plus or minus 

does not matter. What it means is that if you cross the node, you cross this node, sign will change. 

So, if this is plus, you will get minus, if you cross this node then also sign will change. So, if this 

is plus it will become minus. 

And once again the same thing will happen when you cross this node. So, if this was plus now this 

is minus, this is going to be plus and this is going to be minus. So, this is the contour diagram of 

3pz orbital. Remember contour diagram of 2pz and 3pz orbitals have this difference because of the 

radial node. 
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Let me show you the 3d picture, nice. And here you can see the contours as well. So, you see you 

have a big hill, a big turf followed by a small turf and a small hill. In fact, to get this diagram is 

very difficult these are so small, but multiply them by r square will take square of this and multiply 

them by r square this is going to blow up. 
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Then similarly, you can plot this 3pz orbitals.  
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Let us talk about d orbitals, 3𝑑
𝑥2+𝑦2 orbital. This here is the wave function,                        

          Ψ3𝑑
𝑥2+𝑦2 

=  
1

81√2𝜋
(

𝑍

𝑎
)

3 2⁄
(

𝑍

𝑎
)

2
𝑟2 𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙.  It has 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙. How do I write 

cos 2 phi in terms of sin phi and cos phi? 
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I hope that is not very difficult for us. When we do that, we will see that this 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙 becomes 

(𝑥2 − 𝑦2) 𝑟2⁄  and when you equate that to 0, you get the angular node 𝑥 = ±𝑦. These are the 

angular nodes. Now, we can draw the lobes this is minus and this will be plus, this will be minus, 

this will be plus. 
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What about dxy? For dxy, the angular part of the wave function                                                                              

Ψ3𝑑𝑥𝑦
=  

1

81√2𝜋
(

𝑍

𝑎
)

3 2⁄
(

𝑍

𝑎
)

2
𝑟2  𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ )𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙 is 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙, that turns out to be 𝑥𝑦 𝑟2⁄ . 

What is 𝑠𝑖𝑛2𝜙? 𝑠𝑖𝑛2𝜙 = 2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙. So, 1 𝑠𝑖𝑛𝜙 gets multiplied by 𝑠𝑖𝑛𝜃 and the other 𝑠𝑖𝑛𝜙 gets 

multiplied by 𝑐𝑜𝑠𝜙, that is how you get xy. Angular nodes become 𝑥𝑦 = 0, that is, 𝑥 = 0, 𝑦 = 0. 

That is how you get these lobes.  
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Similarly, for 3𝑑𝑧2, no, one more thing. 
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See remember, this 3𝑑𝑥𝑦,𝑦𝑧,𝑥𝑧,𝑥2−𝑦2 these are actually obtained by taking linear combinations. One 

set is obtained by taking linear combinations of m equal to plus 1, m equal to minus 1 orbitals and 

the other one is generated by taking linear combinations of m equal to plus 2 and m equal to minus 

2 orbitals, which gives you which I leave that for you to figure out. 
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Last orbital that I want to talk about is your 3dz2, my favorite orbital.                                                

Ψ
3𝑑𝑧2𝑎3 2⁄ =  

1

81√6𝜋
𝑍7 2⁄  𝑟2  

1

𝑎2 (𝑒𝑥𝑝(−𝑍𝑟 3𝑎⁄ ))(3𝑐𝑜𝑠2𝜃 − 1) 

Because the angular part is (3𝑐𝑜𝑠2𝜃 − 1). In fact, if we equate this to 0, you will get 𝜃 =

𝑐𝑜𝑠−1 (1
√3

⁄ ), which comes out to be 54.7 degrees. This is called Magic angle, and this quantity 

keeps on coming back to haunt us in many, many different areas. But we will not talk about that 

anymore. What I want to say is that 54.7 degrees is not the only solution. There is another solution. 

And that solution is, I will be lazy and I will say 180 degrees minus 54.7 degrees. 

So, remember, this is 1 node, conical nodes here, this is another node. And since the angle is 54.7 

degrees, more than 45 degrees, that is why 1 lobe is bigger, the other lobe is smaller. And since it 

is conical, this one turns out to be when you just turn it around, the smaller lobe turns out to be a 

belt. But this here is really the 3d picture. So plus, plus; minus, minus, this is what 3dz2 orbital is. 
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You can generate surface of constant probability and then you get this familiar picture. Now, you 

can go on and draw the nodes here, you are going to get two conical nodes. 
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Similarly, we are not going to talk about f orbitals, but I will just show you the constant probability 

surfaces of the f0 orbital. And these are the nodal surfaces. 
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This, so this is what we wanted to say about hydrogen atom wave functions that are orbitals. Now 

the question is this, hydrogen has only 1 electron, so why do we need s, p, d, f so many orbitals, n 

equal to 1, 2, 3. Because, first of all, we want to access excited states. We want to talk about 

spectra. We want to talk about many electron atoms. We are going to see how these orbitals are 

used to work out wave functions for a simple molecule, molecular ion if you call it, that is 𝐻2
+, 

they are called molecular orbitals. 


