
Chemical Kinetics and Transition State Theory 

Professor Amber Jain 

Department of Chemistry 

Indian Institute of Technology, Bombay 

Lecture 06 

Maxwell-Boltzmann distribution: how fast are molecules moving? 

(Refer Slide Time: 0:16) 

 

Hello, and welcome to module six of Chemical Kinetics and Transition State Theory. Today, 

we are going to look at the distribution of speed and velocities. In last module we had looked 

at the Boltzmann distribution itself, but what can we do with that Boltzmann distribution is 

what we are going to look at today. In doing so, we will also cover up one important topic that 

will be important later on which is the translational partition function.  
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So, a quick recap of module five we had given you a partial derivation of calculating the 

equilibrium density matrix, it is given by this Boltzmann distribution e-βH where H is the 

Hamiltonian divided by Q and Q is called the partition function, which is an ∫ 𝑑�⃗� ∫ 𝑑�⃗� e-βH.  

And we also discussed how do we calculate average of any property. If I have any quantity, 

let’s say A as a function of some q and p in general, to find the average of A, I must integrate 

over all p and q ρ which gives me the probability of being at q and p multiplied by A, which 

gives me the value at q and p. So, in the last module, we looked at a few examples, which is 

average momentum and average kinetic energy.  
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So, before moving forward, let us do one thing, which is going to be useful. So, I have written 

down the definition of our ρeq, which is what we derived in the last module e-βH divided by 

what this integral is basically the Q and I have written the Hamiltonian explicitly, which is the 

kinetic energy plus the potential energy, so I want to just substitute this H in this ρeq and see if 

we can simplify this equation a little bit.  

So, if I substitute what I get is, so I write H as ∑
𝑝𝑖

2

2𝑚𝑖 + 𝑉(�⃗�) divided by ∫ 𝑑�⃗� ∫ 𝑑�⃗� 

𝑒−𝛽 ∑
𝑝𝑖

2

2𝑚𝑖 +𝑉(�⃗⃗�)
. I write the same big summation here and summation in exponential can be 

converted into a product of exponentials.  

So, I write the same thing as 𝑒−𝛽 ∑
𝑝𝑖

2

2𝑚𝑖 ∗ 𝑒−𝛽𝑉(�⃗⃗�) divided by, and I will do the same separation 

in the denominator, I will write the momentum first because I have momentum first in the 



numerator. So, just to be consistent, we write it as this my bad it should be an integral not a 

summation.  

So, let’s remove the summation let’s put in the ∫ 𝑑�⃗� 𝑒−𝛽𝑉(�⃗⃗�). So, some of you notice that we 

have separated the terms as a function of p and as a function of q. So, this part we will define 

to be 𝜌𝑒𝑞
𝑝 (�⃗�), only p, note there is no q dependence in this and this portion I will define of  

𝜌𝑒𝑞
𝑞 (�⃗�), there is no p dependence in this one.  

So, in total, I am writing this 𝜌𝑒𝑞(�⃗�, �⃗�) in separable form of 𝜌𝑒𝑞
𝑞 (�⃗�) ∗ 𝜌𝑒𝑞

𝑝 (�⃗�), where 𝜌𝑒𝑞
𝑝 (�⃗�) is 

defined here and 𝜌𝑒𝑞
𝑞 (�⃗�) is defined here.  
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So, let us look at the equilibrium function for p for a moment, we can actually simplify it a 

little bit more. So, I have rewritten the 𝜌𝑒𝑞
𝑝 (�⃗�) right here. Now, the denominator that we have 

here my bad, this should be ∑
𝑝𝑖

2

2𝑚𝑖  , this should be ∑
𝑝𝑖

2

2𝑚𝑖 . So, this denominator that we get is 

called the translational partition function, why translational because it is simply kinetic energy.  

So, this is the partition function when V of q is zero for a free particle. So, this partition function 

is called the translational partition function and we can actually simplify it and calculate it, you 

can find an closed form answer for this. So, let’s try to do that. So, this thing first of all note 

that ∫ 𝑑�⃗� is the same thing as ∫ 𝑑�⃗�1
∞

−∞
 ∫ 𝑑�⃗�2

∞

−∞
 till ∫ 𝑑�⃗�3𝑁

∞

−∞
, remember, we have 3N momenta 

3N positions, why 3N? N is the number of particles for each particle I have x, y and z. So, I 

have px py pz for particle one, px py pz for particle two, they are on so forth. So, I have 3N 

momenta. 



So, this is what I have that I have to calculate, well, we note that I can simplify this integral as 

𝑒−𝛽 ∑
𝑝1

2

2𝑚𝑖 *𝑒−𝛽 ∑
𝑝2

2

2𝑚𝑖  till 𝑒−𝛽 ∑
𝑝3𝑁

2

2𝑚𝑖 . So, I have again taken the exponential, exponential was a sum 

form so, I can take it into a product form.  

Now, I note that this is equal to. So, I separate all the terms out and take them the corresponding 

integral. So, let us look at each integral separately first separated out all the integrals, all are 

independent integrals and I can evaluate them one at a time. That’s the beauty of this. 

And this one integral is called a Gaussian integral from all over all space -∞ to +∞ that integral 

form is known, I have provided you the formula and again throughout the course, any integral 

which is complex, we will provide you, you do not have to memorise any of this and this is not 

really a maths course.  

So, this thing, here we note that in my formula I provided you this a. So, if a here will be 
𝛽

2𝑚
. 

Yeah, it is the constant before my variable, which is nothing but 
1

2𝑚𝑘𝐵𝑇
. So, this thing becomes 

equal to √2𝜋𝑚𝑘𝐵𝑇, so I am simply using this formula here √
𝜋

𝑎
. So, √

𝜋

𝑎
 but a note is one over 

something so I get this thing. But I get the same integral when I solve for p2. In fact, I will get 

the same for all 3N of them. 

So, if I multiply these together what I get is or I just write slightly differently. So, now we have 

derived the formula for the translational partition function, this will be useful later on. So, we 

keep it for now. And once we use it, I will remind you of this, for now this is nothing but the 

denominator of 𝜌𝑒𝑞
𝑝 (𝑝).  
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So, now finally, I get  

𝜌𝑒𝑞(�⃗�) =
𝑒−𝛽 ∑

𝑝𝑖
2

2𝑚𝑖

(2𝜋𝑘𝐵𝑇𝑚)
3𝑁
2

 

So, let us just look at it in one dimension only. So, for this I get 𝜌𝑒𝑞. For N=1, I still have three 

momentums px py pz and in our notation we refer p1 as px, p2 as py and p3 as pz and here I will 

substitute N=1 so I get this. So, that is a distribution of momentum in one dimension.  
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I am trying to figure out what will be the distribution of speed? After I do not care what is the 

value of momentum in different directions x, y and z, speed is a more natural quantity, I want 



to figure out how fast is a particle moving? Yeah, that’s a very natural question to ask. So that 

is what I am trying to figure out. So, let’s get to that. First of all, let us be formal and define 

speed, speed is nothing but √𝑉1
2 + 𝑉2

2 + 𝑉3
2, where V1, V2, V3 are the velocities in x, y and z 

direction.  

But I write it in the language of momentums and I call this as 
|𝑝|

𝑚
, where |𝑝| is this, so I am 

trying to find a distribution of u and how do I do that? Alright, so let us just look at ρ once 

more of p1, p2, p3 this is equal to 
𝑒

−𝛽
𝑝1

2+𝑝2
2+𝑝3

2

2𝑚

(2𝜋𝑘𝐵𝑇𝑚)
3
2

 just from last slide.  

The important thing to remember when converting between distributions so I am going from a 

distribution of p1, p2, p3 to a distribution of u, when you do that, in whichever field not only 

kinetics or thermodynamics quantum dynamics wherever remember the volume element that 

is very important.  

So, I will start writing that a little bit more explicitly. So, this is really what this probability 

density anyway mean in a very small volume of size dp1*dp2*dp3, what is the probability of 

finding the system there? So, I am asking you the question, what is the probability ρ(u)du is 

equal to. We will actually start with slightly different question, which is what is ρ(|𝑝|)d|𝑝|. 

Because here I have everything in the language of momentum. So, I will start with momentum 

and then I will go back and answer this question.  
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Now, to calculate this, I will have to remind you a little bit of what is called the spherical polar 

coordinates, you must have seen this in some form or another, it occurs in many many different 

contexts. So, imagine you have three dimensions x, y and z. I define a new coordinate system 

which is called r, θ and ϕ, r is nothing but what we are looking were in the previous slide, θ is 

the angle that the vector r makes with the z axis and ϕ is the angle that the projection of the 

vector r on the xy plane makes with the x axis.  

So, few important properties that I want to remind you of r goes from zero to infinity, θ goes 

from zero to π and ϕ goes from zero to 2π these are the limits and more importantly, what is 

the volume element in this. So,  

dxdydz = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙 
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So, now the 𝜌𝑒𝑞 I had already written in the last slide I have forgotten to write dp1 dp2 dp3. I 

want to find 𝜌𝑒𝑞
𝑝  (|𝑝|, 𝜃, 𝜙)𝑑|𝑝|𝑑𝜃𝑑𝜙 that’s my first challenge. So, that you can see 

𝑒−𝛽|𝑝|2/2𝑚

(2𝜋𝑘𝐵𝑇𝑚)
3
2

  

once more |𝑝| is nothing but √𝑝1
2 + 𝑝2

2 + 𝑝3
2. 

And now, we introduce the volume element that we talked about in the last slide, which is 

|𝑝|2 sin 𝜃 𝑑|𝑝|𝑑𝜃𝑑𝜙, but this is not what we wanted, right, we wanted 𝜌𝑒𝑞
𝑝 (|𝑝|). I do not care 

which angle θ and ϕ it is, anyway θ and ϕ are arbitrary they depend on the axis choice. 

So, what I am going to do is I integrate over all of θ and all of ϕ. So, because I want the average 

value of θ and ϕ, again the range of θ is zero to π, ϕ is zero to 2π and I write this whole thing 



here and I write d|𝑝| separately I should have a d|𝑝| here as well. So, what I do is, I take the 

terms that are independent of θ and ϕ outside the integral and then I integrate over θ and ϕ. 

So, for θ you know I have sin 𝜃, for ϕ I have dϕ I leave it as a homework for you to prove this 

is equal to two and this is equal to 2π. These are very easy integrals you should be able to do 

so, in total, I get  

4𝜋|𝑝|2

(2𝜋𝑘𝐵𝑇𝑚)
3

2⁄
𝑒−

𝛽|𝑝|2

2𝑚  
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So, I calculate this  𝜌𝑒𝑞
𝑝 (|𝑝|) I just copied it from the last slide but I wanted ρ of u, not p, for 

our will let us not very hard now, I note that  

u=
|𝑝|

𝑚
 

and so  

du = 
𝑑|𝑝|

𝑚
 

. And so, we just substitute these quantities here |p| = mu, d|𝑝| = mdu. So, this becomes equal 

to  

𝑒−𝛽𝑚2𝑢2/2𝑚

(2𝜋𝑘𝐵𝑇𝑚)
3
2

4𝜋𝑚2𝑢2𝑚𝑑𝑢 

. This is 𝜌𝑒𝑞(𝑢)𝑑𝑢.  



So, I just simplify this a little bit this m cancels with this just massaging a little bit here and 

there, I get 4π𝑢2 and I just transform this into this form you can quickly verify whether I have 

written it correctly or not make sure you can do this if I have made a mistake then please correct 

me.(Refer Slide Time: 21:46) 

 

So, this is the final form I get for the Maxwell Boltzmann distribution it’s a very famous 

distribution it is named after these two outstanding scientists Maxwell and Boltzmann who 

have contributed immensely towards statistical mechanics. So, let us just look at one thing you 

let us make a plot of it. So, I just want to look at as a function of u, how does 𝜌𝑒𝑞(𝑢) look like? 

So, well if you look at it, this function is a product of two different functions, one is 𝑢2. So, 

𝑢2looks like this. I am just qualitatively trying to find how the curve will look like and the other 

function is this Gaussian and this Gaussian looks like this. This will keep on going till it reaches 

zero at infinity. Very qualitatively, I am not being very precise here.  

So, if I take a product of these two, my question is what will you get, so I would recommend 

pause the video, take a moment and multiply this on yourself do not take help of any computer 

or anything and make a plot. Hopefully, you pause the video and make the plot by your own 

self.  

So, the point to note is that 𝜌𝑒𝑞, I should change the colour 𝜌𝑒𝑞(𝑢 = 0) = 0. If I put u=0, this 

red thing goes to zero and 𝜌𝑒𝑞(𝑢 = ∞) = 0 because the green thing goes to zero. So, I start with 

zero here and I must end with zero as well. So, I get a function that increases initially and then 

over time decreases and goes to zero. So, this is the Boltzmann, Maxwell Boltzmann 

distribution.  



(Refer Slide Time: 24:08) 

 

 

So, I have a challenge to you a question. You have this distribution good. In the previous 

module, we calculated the average momentum and we showed it is equal to zero. What is your 

guess? What will be the average speed? Will it be zero, greater than zero or less than zero? So, 

please go to this link that is provided here and upload answer there. This is completely 

anonymous, this is for your own good and you will get any immediate feedback based on your 

answer.  
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So, hopefully all of you have answered this question based on whatever you think it is right. 

Let us try to solve it now. So, the <u>, well how do I find <u>, it’s the same trick ∫ 𝑑𝑢 𝜌𝑒𝑞(𝑢)𝑢. 

Now, the question is, what is the limit for u? Is it -∞ to ∞ or zero to ∞? It is zero to ∞. Remember 

that u is magnitude, it can never be negative, you are only dealing with that overall quantity. 

And so, we substitute all of this big formula here, 4π𝑢2𝑒
−𝛽𝑚𝑢2

2 𝑢. So, we take all the constants 

out of the integral. And what we are left with is ∫ 𝑑𝑢 ∗ 𝑢3 ∗
∞

0
 𝑒

−𝛽𝑚𝑢2

2 . And again, as before, we 

will provide you the integrals when you need the integrals, this is slightly complex integral. 

And so, we have provided you the answer here on how to solve.  

So, to match these two, my a = 
𝛽𝑚

2
. So, I get  

(
𝑚

2𝜋𝑘𝐵𝑇
)

3

2 * 4π * 
1

2𝑎2 
  

a is I will write this as m over 2 kB T because I have kB T in this equation. So, 𝑚2 into (kB T)2. 

So, you can go ahead and simplify this equation and show this is equal to √
8𝑘𝐵𝑇

𝜋𝑚
 . So, this is 

clearly greater than zero.  

So, by the way, you didn’t had to do the maths to tell whether it is greater than zero or not see, 

speed is a positive quantity. So, if I am averaging over a lot of particles over positive numbers 

only, well, you are going to get some positive number. So, it cannot be zero, it cannot be less 



than zero, I have some speed of some particle which is positive. And so, you can formally show 

it is equal to this.  
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So, in summary, today, we have looked at the Maxwell Boltzmann distribution of speed, it’s a 

very important distribution and this will be very useful in the coming modules when we discuss 

kinetic theory of collisions. We have shown that the average speed is equal to √
8𝑘𝐵𝑇

𝜋𝑚
 .  

Please do not memorise any of these as and when needed, we will always be providing you 

equations. This is not a memory, going to be a memory test. This is not going to be a 

mathematics test. Finally, one another thing just keep in mind for future. We have also derived 

what is called a translational partition function as (
𝑚

2𝜋𝑘𝐵𝑇
)

3𝑁

2  . Thank you very much. 


