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Hello and welcome to module five of Chemical Kinetics and Transition State Theory. Today 

we are going to use the dynamics and phase space that we learnt in the last module and 

calculate what is the equilibrium density matrix, this is a very famous relation which is 

attributed to Boltzmann. We will use this equilibrium density matrix to calculate average 

quantities and then we will calculate the Maxwell Boltzmann relation.  
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So, just a quick recap in the last module, we looked at the density in phase space ρ(q, p), 

this density is the density of finding the system at the given point in space which is (q, p) 

and again (q, p) represents the phase space. We also derived, not derived really but verified 

the Hamilton's equations of motion given by these equations ∂qi/∂t is ∂H/∂pi and ∂pi/∂t is -

∂H/∂qi very symmetric looking equation. 
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So, we will move forward with this and what we want to find now is how does density matrix 

changes with time I have told you how q and p changes with time, good, but as I have 

mentioned in the last module, we are really not interested in dynamics of q and p completely 

because it’s a very very large space, I am more interested in finding the dynamics of ρ.  

So, we are going to assume one statement, the derivation can be slightly mathematical and 

complex. So, we are not going to cover that in this course, it is called the very famous 

Liouville’s theorem, another very famous mathematician and he was also exploring the 

dynamics of our nature, the differential equations that govern our nature and he figured out 

one very strange and powerful theorem which is called the Liouville’s theorem dρ/dt is 0.  

I must here emphasize this is a full differential I have not made a mistake, this is a full 

differential with respect to time and not partial differential. So, this is not partial differential 

for those interested students who want to read a proof of this I have provided a link here. This 

is one of the rather concise proofs, the proof, there can be more complex proofs coming from 

divergence theorems that you can also look at, but this one will give a proof in a rather simple 



language. So, if you are interested you can look at this proof you do not have to. First let me 

tell you what this Liouville’s theorem mean. What am I talking about? What the implication 

of this Liouville’s theorem is let me draw a one dimensional phase space. 

Well, there is no one dimension it’s always 2D q and p. So, I have a one-dimensional system 

which is only q and the corresponding momentum p. What this is saying is let us look at 

some point in this phase space. And essentially let’s look at a little box here of length ∂x and 

length ∂p and I have some density of particles in this box and we are going to look at ∂x and 

∂p being very small.  

Liouville is asking the question, fine I have this very small box. How does this box changes 

with time? How does this box evolves with time? Ok So, each particle in this box is having 

some dynamics and I end up getting a new box that perhaps looks like this with some new ∂q 

prime and with some new ∂p prime, Liouville says that ∂q*∂p = ∂qˈ*∂pˈ. 

So, the volume of this little box does not changes with time, it can get reconfigured, its shape 

may change, but the volume will not. And in retrospect that’s not a very strange thing really, 

is it? What we are saying is that the number of particles is effectively conserved, we are 

starting with some particles, well, they may expand or contract a little bit, but the net volume 

does not changes, its shape may change.  

So, well, that might be intuitive or non-intuitive depending on you, but we do have a rather 

mathematical proof of this and in this course we are not going to write the proof, we are not 

going to cover the proof, but we will assume this statement to be true and we are going to 

look at the consequence of this theorem.  
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So, let us analyse this dρ/dt, dρ(q, p, t) we are being more formal over dt is given by you 

remember your chain rule it is given by 3 partial differentials, ∂ρ/∂t +∑
∂ρ

∂qii
∂qi

∂t
+ ∑

∂ρ

∂pii
∂pi

∂t
  . 

So, here and here I have dropped the brackets just for notation ease, but at all points, the ρ is 

the same as ρ(q, p, t). 

So, this is corrected for all ρ we are interested in ρeq . That’s what we are trying to find in this 

module and play around with it. So,ρeq in the last module, we specified an important property 

of this, which is that ρ, ∂ρeq/∂t  is 0 that is ρeq does not explicitly depends on time, it depends 

only on q and p that is the very meaning of equilibrium.  

So, I can get rid of this term, this whole thing is 0 by Liouville’s theorem. So, I end up with 

only this equation, for equilibrium if ρ is non-equilibrium then ∂ρ/∂t may not be 0. Well, 

what about it we get an equation let us massage this equation a little bit more and what we get 

is. 

So, this differential equation will hold true only for equilibrium density matrix. So, now we 

will put in the Hamilton's equations of motion for dqi/dt and ∂pi/∂t. So, I will get this is = 

∑
∂ρeq

∂qi
i   and 

∂qi

∂t
 look back into your notes. This is =  

∂H

∂pi
 over ∂pi and 

∂pi

∂t
 you can again look 

back into your notes. This is =
−∂H

∂qi
. This is equal to 0. Let me just take this equation and write 

it slightly cleaner. I will take the summation together of these two terms. I will take the 

negative outside and I get this equation.  
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So, I have this equation that I have just copied here in this slide. What do I do with this 

equation? As it turns out, we can solve this equation and the solution is slightly hard. So, in 

this course, we are simply going to state you the solution, the solution is ρeq = some N*e-βH 

and H is a function of (q, p)..  

So, I will leave this as an assignment problem to you, this will be one of the assignment 

problems to verify that ρeq satisfies the above equation. So, you have to substitute ρeq in this 

above equation, take its derivative with respect to qi and pi and show that this sum over i will 

come out to be 0.  
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So far, what we have got is ρeq is N*e-βH, where β is a constant so far, I have not specified 

what β is. But this particular ρeq might be reminding you of something very specific in 

statistical mechanics, you must have seen the distribution from a different perspective for 

canonical ensemble, some constant into e-βEi at a particular E in that a statistical mechanics, β 

was 1/kT where kB is the Boltzmann constant, you have to be as famous as Boltzmann to get 

a constant after you. 

Note that H is the equivalent of energy. It’s a function, but that is what gives me the energy. 

So, we note these two equations. And we will postulate that βis1/kT for us, even in this 

equation.  
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So, with this I want to make a few comments on this distribution, this distribution is called 

the Boltzmann distribution. This distribution holds only at equilibrium. Never ever make the 

mistake of assuming this distribution out of equilibrium, out of equilibrium I have no idea 

what this ρ might be, that’s for a totally different course.  

Another somewhat confusing point that might appear to you, this ρ is a statistical answer, it is 

a highly averaged answer. What I mean by that? Suppose, I take a small system, I take a box 

with a thousand gas particles in it and I find the distribution of q and p at a given instant of 

time that distribution might not follow this Boltzmann distribution.  

However, if you increase the size of this system, instead of using thousand, I use million, I 

use billion, I use 1023, I use 10100. So, as this number keeps on increasing, my distribution 

will tend to this Boltzmann distribution, or if you do not want a large system, you may ask 

that is all good and fine, but my system is finite only after all in this room that I am sitting in, 

I have a finitely many number of gas particles will Boltzmann distribution not hold in it, it 

will if you average over time.  

So, for even a finite size of particles, if I take the distribution at different snapshots of time, I 

find it at some time T0, I find it again at time T1, I again keep on doing it, and average them, I 

am going to get back this distribution. This is by the way called the Ergodic hypothesis, just 

an extra bit of information.  
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So, what we have got? Is this Boltzmann distribution in phase space. It’s very famous, I have 

just written it out clearly here.  
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Let us get into what is the normalisation constant N now, so one property that we had listed is 

integral over all phase space will always be 1. Well, this should also be true for equilibrium 

density matrix, if it’s true for any ρ, ρeq is just a special case of a density matrix, this must 

also be true. So, I get ∫dq ∫dp N* e-βH. N is a number, it’s a constant.  

So, I take it out of the integral and I get N = 1/∫dq ∫dp e-βH(q,p). As it turns out, this integral 

that you are looking at is a very important integral. This is called the partition function whole 

of statistical mechanics is dependent on this integral and we can calculate any property we 



want in statistical mechanics using this partition function. So, at the end, I get N = 1/Q or ρeq 

= e-βH(q,p)/Q.  
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So, now we will look at if I have this ρeq, what do I do with it? Can I comment on something 

useful out of this ρeq? And the answer is to calculate any useful property you always average 

over phase space. Again, I do not care about where each particle is, I also usually do not care 

about a property at a given point in phase space, I want to calculate an average quantity like 

temperature.  

So, once more a reminder of our 1D example, I have let’s say q and p. And I have some 

quantity, some function defined over q and p. And I want to find the average of A, what am I 

going to do? Well, I will ∫dq, I will ∫ dp, over all possibilities, I will find the probability that 

I am at that (q, p) that is given by ρ*A(q, p).  

So, that’s our usual trick of finding averages, we find this property that I want to find average 

over at that given (q, p), I find what is the probability that I am at that point and then I just 

integrate over all phase space. So, in general, for an N dimensions, well let me write 3N 

dimensions, I get average of some quantity A where A is some function of (q, p) to be an 

∫dq ∫dp ρ(q, p) A( q, p).Ok 

So, I have calculated an average quantity now. And once more just to remind you, 

∫dq ∫dp is a shorthand dq1 -∞ to +∞, -∞ to +∞ of dq2 till -∞ to +∞ of dqN, -∞ to +∞ of dp1  

-∞ to +∞ of dpN, it should be 3N.  



So, I am integrating over every possible coordinate and momentum and rather than writing 

this rather ugly and long many integrals, I denote it ∫dq⃗ ∫ dp⃗ .  
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So, let us take an example again let us revert back to 1 dimension and let us find what is 

average momentum, we have a property which is p. So, a is p now, and I want to ask you the 

question what is average momentum at equilibrium. So, we will use the prescription that we 

had. So, in 1D (q, p) and ρeq(q, p) is given by e-βH(q, p) divided by a partition function Q. So, 

we will simplify this a little bit my Hamiltonian is given by p2/2m which is the kinetic energy 

+V(q). Ok 

And q is ∫dq ∫dp this e-βH. So, the average over momentum as defined in the last slide is dq 

dp p the quantity I want, into ρeq. So, let’s substitute these quantities that I have written ρeq is 

e-βH/Q and I will substitute the Q here in this equation.  

So, I get ∫dq ∫ dp p e-βH divided by something that will look very similar. So, Q is a number 

Q I have taken out of these integrals and substituted Q =∫dq ∫ dp e-βH in all of these places, I 

have limits from -∞ to +∞. Let me put all these integrals there -∞ to +∞. So, how do we 

calculate this? How do we simplify this?  
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So, let me just write down what I had got in the last slide, dq -∞ to +∞ dp - βH*p and now 

we are going to substitute our Hamiltonian here. And that Hamiltonian was p2/2m + V(q)*p. 

Quite the same I am not going to, I am going to stop writing integral limits. 

So, we will open this exponential and note that this is equal to, so I have taken the part that is 

dependent only on q on the ∫q only. And the part that is dependent on p only in the ∫p and 

in the denominator, I do the same this looks like a complex integral to solve, how do I do it? 

It’s actually trivial to solve. This is actually equal to 0. Why? You ask? Well, you see, this 

cancels with this. This is easy. These look bit nasty. But you note that the numerator, this is, 

this function that is there. 

What you notice is that this is an odd function. So, f(-p) = -f(p). And what do you know about 

integrating an odd function over all space? It is equal to 0. So, the numerator is 0, and so the 

whole thing becomes 0. But well, this is perhaps you already something you expect, don’t 

you? The average momentum should be 0.  

It doesn’t matter, at thermal equilibrium all directions are equivalent so the particle has equal 

tendency of moving forward as going backward. It does not mean that every particle is at rest, 

the average is 0.  
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So, I have a question challenge for you. Can you estimate what the average kinetic energy is 

going to come out? So, let’s assume I have two different chambers at same temperature T, 

one filled with helium and other filled with argon, what do you think will be the average 

kinetic energy per atom for these two chambers?  

So, take a moment, think about this answer very carefully. Go to the link that is provided here 

and provide your answer there for an immediate feedback. Do you think the helium gas will 

be larger, for helium it will be smaller or both will be equal And if you do not know be 

honest, and you can write you do not know, this is all anonymous. So, take a pause and 

answer this question.  



So, we will quickly look at how to solve this question. Well, they have to be equal. That’s my 

claim, we are going to prove it mathematically. But we already know they must come out 

equal, how? Because the average kinetic energy is essentially related to temperature. And two 

boxes connected to each other of whatever molecules they are filled within helium, neon, 

argon, nitrogen, hydrogen atmosphere, whatever.  

At equilibrium, the average kinetic energy must be equal because the temperatures are equal. 

So, we are going to prove this statement this intuition that I have. So, we are going to 

calculate the average kinetic energy p2/2m now, just like we had calculated the average p.  
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So, now we will play the same tricks is well ∫dq ∫dp over all space. That’s your ρeq*p2/2m. 

So, just like we did in the for average momentum, we will separate these and write the 

Hamiltonian and the denominator will be the partition function which looks very close to the 

numerator, but not exactly. 

And we again do this separation of q and p. So, I get -∞ to +∞ dq 2m*p2/2m, dq–βV(q) ∫p, 

e−βp2/2m. So, the first thing that you notice that the potential term exactly cancels. So, it 

might my gas might even be interacting, it might be hydrogen, it might be whatever gas you 

want, even water vapour the potential term will exactly cancel.  

And so, we have to solve these nasty integrals that are here. So, to solve that, I have provided 

you the integrals here. So, use those, plug them in and calculate these. So, this is going to be 

another assignment to be able to solve these integrals using the provided integrals and you 

have to show that this is = 
1

2
 kBT, so 1/2β. So, this is another assignment problem.  
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So, we will stop here, what we have today looked at in this module is how equilibrium 

density matrix comes about from the fundamental equations of motion. We have skipped a 

few steps in the proof, we do not derive the Liouville theorem completely, but it is to 

motivate where does this partition, where does this density matrix comes about. Ok 

So, you do not need to know get details of the proof that we have not covered, but what you 

need to know is what is the origin of this equilibrium density matrix, we have used this 

equilibrium density matrix to calculate average quantities, we have looked at average 

momentum and average kinetic energy today. So, with that we will stop today and in the next 

module, we will look at one of the very famous distribution, which is the distribution of 

speeds. Thank you very much. 

 


