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Hello, and welcome to module 44 of Chemical Kinetics and Transition State Theory. In the last 

module, we relooked at unimolecule decay in more detail and we found that there is a little 

discrepancy if we build a simple model for unimolecular decay that we had looked long time ago 

and compare it with experimental data. So, today, we are going to look in more detail with a 

different approach that R, R and K had come up with. R, R and K again are Rice, Ramsperger 

and Kassel and trying to resolve the differences we get with experiment. 
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So, what is, a quick recap of what we had discussed in the last module? What is, again, the 

problem we have the unimolecule decay, the overall reaction looks like this, some A going to B, 

only one reactant. And the mechanism of this proposed by Lindemann was as follows. Two 

molecules of A collide with each other to give an excited A star and A and A star gives B. You 

can, of course, use chemical kinetics and work out the overall rate constant for this problem. 

What we, this k1 is defined as rate equal to minus dA over dt equal to dB over dt. And I am 

defining this rate to be equal to k1 into concentration of A. 

So, when I am defining this, I am not assuming this A to going to be B elementary. Therefore, 

this k of 1 is not a number. It is depends on the concentration of A, fair enough. When I work out 

the kinetics of this and try to find k1, what you will get is and just we showed a long time ago, k1 

over k minus 1 of, these are all functions of temperature, you will get this quantity. I am sorry, 

this is supposed to be A. 

The problem is that this result does not matches well with experiment. There are, it has 

qualitative agreement, but not exactly agreement. And so, then this new idea came about that 

here we are assuming this k1, k minus 1 and k2 to be independent of each other. We are 

calculating them one by one as simple numbers as a, at a given temperature. But that may not be 

right. Suppose this is A, this is B and this is somewhere A star, k1 is this, k minus 1 is this and 

this is k2. So in this model, the problem is that this k1 takes me to A star and at that given energy 



A star has either a choice to become a product B with rate constant k2 or come down with the 

rate constant k minus 1. 

So, these are not, I cannot calculate them as functions of temperature. I have to look at each 

energy, what is happening. So instead of writing this, we write it as a function of energy, the 

same quantity, and integrate over all possible energies above the barrier height. Ea again is this 

barrier height. Below, if E is less than Ea, we know that more reaction will happen. So we 

integrate over all energies more than this barrier height. 

So, now the question becomes, how do I calculate k1, k minus 1 and k2? So R, R and K, Rice, 

Ramsperger and Kassel, had given a recipe to calculate this and that is what we will discuss 

today. So the basic underlying model for this calculation of k1, k minus 1 and k2 has what we 

have discussed a few modules ago, when we were calculating rate constant at a given energy. 

Remember, now we are thinking of one given energy calculate this k1, k minus 1 and k2 and 

then integrate over all energies. So again that picture of constant energy calculation becomes 

important. 

So, the RRK model was that my molecule comprises a bunch of harmonic oscillators and all 

harmonic oscillators have the same frequency nu. So I have s oscillators with frequency nu and 

the rate of the reaction is proportional to the probability that mode 1 has energy E greater than 

Ea.  

And I have arbitrarily chosen mode 1 to be the reaction coordinate. You could have chosen mode 

7 or mode 9, whatever is your favorite number. 1 is my favorite number. So I decide that mode 1 

is a reaction coordinate. So we have discussed this model before and today we will use this 

model to calculate this unimoleculer decay rate constant. 
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So, the first thing that we have already solved for is the k2 of E. Once more what is k2 of E, if 

this is A star k2 is that if I have come up here going from A star reactant to B in the product. So, 

and at that given energy, so going from here to here. So within the RRK model, we had 

calculated this a few modules ago and we had shown that this is given by this expression. E is of 

course, a total energy, Ea is again the barrier height and s is a number of oscillators. So one 

constant down k2 of E. 
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The second constant k minus 1, k minus 1, the prescription given was and it is going to be a 

somewhat approximate prescription, we calculate k minus 1 using coalition theory. That is not 

the big approximation really. I like my 1D surfaces. This is A star at that given energy E. k 

minus 1 is the rate of losing energy. That is important. It is not gaining energy, but losing. And 

the mechanism that is being thought of is that this A star is there, zigzagging at very high energy 

and it collides with some A and loses all of its energy. 

So, we know how to calculate that rate constant of collisions and all that using collision theory. 

And the collision theory of the same atom colliding with itself is given by this expression. This 

was discussed in great detail. Remember this factor of half comes because same atom is colliding 

with itself. It is A plus A. It is A star plus A, but A star still has the, is still equivalent to A. D is 

the diameter of A and mu is the reduced mass. 

There are two critical assumptions we make when we have written this. First, you note that this k 

minus 1, it supposed to be k minus 1 is independent of energy. This might seem like a shocker, 

because so far we have been arguing that we have to make these k1, k minus 1 and all these as a 

function of energy and not as a function of temperature. But here I come and I say k minus 1 is a 

function of temperature alone. It is a gross approximation, agreed. 

But if you start thinking about it a little bit more, what we are really saying is, let us assume that 

this activation energy Ea is large, it is much greater than kt let us say. So this energy is a large 

number compared to kt. So what it is saying is, if your energy is here or your energy is here or 

your energy is here, it really does not matter. I have to be, I have to lose energy.  

So this k minus 1 dependence on energy will not be very high. The idea I am saying is if you 

have 1,000 kilojoules per mole of energy, instead of 1,010 kilojoules per mole of energy or 1,100 

kilojoules per mole of energy, this k minus 1 is not going to change exponentially with it. 

So let us just assume it to be a constant. Well, one question that perhaps you are asking, my 

energy is going up to infinite. So there should be a difference between 1,000 kilojoules per mole 

and 5,000 kilojoules per mole, agreed. But also remember that if the energy is much larger than 

the barrier height, the rate constant will anyway come down a lot and that will come out naturally 

in this theory. So that is why energies that are way beyond the barrier height do not contribute 



anything. So we only end up with those energies that are close to barrier height, and in that 

range, I can assume k minus 1 to be almost a constant. 

Second assumption, you will also notice that I have missed the coalition factor here that when I 

was discussing the collision theory, I said is a very, very important, without that the rate constant 

will be completely wrong and you will get a 0 mark if you do not include that. But here I come 

and I have happily forgotten to write that for a good reason.  

The reason is that I am losing energy here, not gaining energy. When you have already very high 

energy and if you hit another molecule, the probability is fairly high that you will just lose that 

energy. As opposed to if you have two molecules that are moving slower and they collide with 

each other and you gain a lot of energy that is not as probable. 

In short, what I am saying is, you think of a ball and it is somewhat of an inelastic ball and I 

throw it very, very hard at a wall, the probability is high that it is going to lose its energy. You 

will hear a loud thump and the ball is not going to do much. But the other way around where you 

have a ball that is just let us say floating around on a wall and it gains a lot of thermal energy 

because of collisions that is not as likely. So that is why we assume the, this frequency of, the 

collision factor is 1. So these two assumptions are applied here. 
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The final number is k1, but instead of finding k1, I will find k1 over K minus 1. K minus 1 I 

have already found. If I find k1 over k minus 1, I have also found k1. Why am I insisting on k1 

over k1 minus now? The reason is think of this A in equilibrium with A star, so 2A plus A. So k 

equilibrium will be nothing but A star into A divided by A square is equal to A star over A, but k 

equilibrium is also equal to k1 over k minus 1. So k1 over k minus 1 has a neat interpretation. 

This is relative population of A star with respect to A. Concentration is nothing but moles by 

Volume. Volume is a constant. So I do not worry about volume. 

So, what I am saying is how many, if I start with A, how many A star are there at that energy E? 

So I am looking at this energy E and I am finding how many A star are there. So how do I 

calculate this? Now, we have done a little bit of our stat mech and rate theories. Well, this 

relative population is nothing but e to the power of minus beta E. Right? Not right. There is a 

little factor that I am missing here. What is the factor? This we have discussed once before. This 

will be the challenge to you. What mistake have I made? Of course, partition function, but other 

than partition function, what other mistake, degeneracy, the density of states. 

So, at that given energy g tells me the density that is already there at that energy or the 

degeneracy multiplied by the Boltzmann factor. So Boltzmann factor gives me the overall ratio 

of energies which energy is more prominent at a different energy. And g of E tells me within that 

energy how many states are there. So this divided by an integral of all energies that is my 

partition function now. So never forget degeneracy. 

So, the idea is, let us say, you have one state here at, as I moving in energy and I have more 

states here. The point is, let us say, E4 has only very few states and E5 has only, even lesser 

state. So even though E3 is higher in energy than E2, it still might be more probable because 

there are just more states there.  

So, you are just more likely to be found there. So it is a competition between how high the 

energy is and how many states are accessible at that energy. So you must multiply those together. 

Now for our given model, which is a bunch of harmonic oscillators, we already showed what this 

g of E is. 
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So, what we are going to do is use this formula that we had used before and apply it to our 

expression here. Let me just make one simplification. This formula was calculated for a bunch of 

harmonic oscillators with different frequencies, but if all omega i’s are equal to some constant 

omega, then this becomes h bar omega to the power of s. That is our model that all oscillators 

have the same frequency.  

So, this becomes e to the power of s minus 1 divided by s minus 1 factorial h bar omega to the 

power of s into e to the power of minus beta E divided by an integral 0 to infinity dE, e to the 

power of s minus 1 divided by s minus 1 factorial h bar omega to the power of s, e to the power 

of minus beta E. S minus 1 factorial and h bar omega are independent of energy. So I can cancel 

these out. This is equal to e to the power of s minus 1 into e to the power of minus beta E. 

Now, look at what integral I am left with and I have given you a general rule to do this kind of 

integral. Here my x is nothing but E, n is nothing but s minus 1 and a is nothing but beta. So if I 

replace x with E, n with s minus 1 and a with beta, I will get exactly this integral here. So this 

integral then becomes n factorial, n is s minus 1 divided by a is beta to the power of s. Beta is 

nothing but 1 over kT. So this becomes this. 



(Refer Slide Time: 17:44) 

 

So, now we have a full prescription to calculate the RRK answer. We want to integrate this 

integral in this integral. K2 we will use as this. We have not yet specified what this k dagger 

though is. So we will just do it. It is some constant, but how do I calculate that constant, I will 

tell you in a minute. K2 I calculate this way. K1 over k minus 1, I calculated in the last slide, and 

k minus 1, I calculate using collision theory. So I have all the components here. And I can just do 

this integration. If I cannot even do it analytically, then I can always use a computer to do this 

integration. 

Another important thing to note, k1 over k minus 1 varies exponentially with energy. So that is 

my argument that when energy is much larger than barrier height the contribution will become 

very small, this exponential will become very, very small and dominant every other term. And 

this k1 over k minus 1 sits here. So that is why for energies that are much higher than barrier 

height, the contribution is always smaller. And that is why for those terms is k minus 1 even if it 

is changing with energy did not matter. 
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So, now let us look at this calculation of this k dagger that I have been avoiding so far. We have 

some expression here now. I have substituted k1 over k minus 1 right here. To calculate k 

dagger, I will do the following. I will take the limit concentration of A goes to infinite. A appears 

only here.  

When A goes to infinite, A is in denominator here, this whole term becomes 0. So I am simply 

left with 1 in the denominator. So this is A to the, to infinite dE, E to the power of s minus 1, e to 

the power of minus beta E divided by s minus 1 factorial kT, let me make it clear kBT, better put 

Boltzmann name there, k2 is k dagger e minus Ea to the power of s minus 1. So, at least one term 

cancels here. 

So, I am left with 1 over s minus 1 factorial kT to the power of s into k dagger into this integral. 

To do this integral, I am going to do substitution of variable. I am going to define E prime as E 

minus Ea, dE prime will be equal to dE. When E prime is equal to Ea, my bad, when E is equal 

to Ea, E prime will be 0.  

When E is equal to infinite E prime will be infinite. So with that, I put 0 to infinite here, dE is dE 

prime. I write this as e to the power of minus beta E prime into e to the power of minus beta Ea. 

E to the power of minus beta Ea is a constant. So I have pulled it out of the integral. Into E minus 

Ea is E prime to the power of s minus 1. 



So, I have gotten this into a form which I know how to integrate. It is the same integral I showed 

you a couple of slides ago. x is E prime, n is s minus 1 and a is beta. So I get this as e to the 

power of minus beta Ea into k dagger divided by s minus 1 factorial kT to the power of s into 

this integral is n factorial, n is nothing but s minus 1, s minus 1 factorial divided by a to the 

power of n plus 1, a is nothing but beta to the power of s. So this terms cancel, no surprise. This 

also cancels. 

So, this is implies limit A going to infinite of k1 is equal to. So this is an experimental recipe to 

calculate k dagger. We find this k1 experimentally at high concentration of A or high pressure of 

A. A is usually a gas. So, either way, even if you are in a solution, you can just make the 

concentration of A high.  

If you are in a gas, you make the pressure of A high. And then you calculate this k1 and then you 

can calculate Ea with aid of some electronic structure calculation and then from that you 

calculate k dagger. So this portion comes from typically experiment and this portion will 

typically come from either experiment or electronic structure calculation. And once you have 

these two quantities, you can then calculate k dagger. 
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So, in short, what are the parameters that are required to do an RRK calculation for unimoleculer 

decay? First is s, the number of oscillators that, unfortunately, is ad hoc. We calculate the RRK 

rate for different values of s and for whichever s the fit matches best with the experiment that is 



the value of s that we take. K minus 1 comes from collision theory. K dagger comes from high 

pressure limit of rate constant calculated experimentally.  

So that is another unfortunate feature that you have to rely on experiment and you cannot 

calculate everything from calculations. And E naught or Ea I have been using, so I should stick 

to my notation. It is the, it comes from either experimental data or electronic structure 

calculations. That is the barrier height of course. 
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So, let me just show you one comparison against experiment. This is a very famous paper. The 

original paper was in 1920s or 30s. I cannot remember. So this is the isomerization of 

cyclopropane. That was the big puzzle of that day in 1910s and 20s. That is the problem that 

everybody was trying to crack. The experimental data is given by this solid line with these 

squares. 

If you use the Lindemann answer, which is the one which is you, what you calculate with k1, k2 

and k minus 1 at constant temperature, what we were doing earlier, then you see some deviation. 

Not a huge deviation agreeably, but not exactly right as well. Now when we apply RRK theory 

for s equal to 13, no good reason why s should be 13 by the way. It just happens that s is equal to 

13, you get that result which is almost matches the experimental answer over a very wide range 

of pressure. So in the x-axis we have essentially log of pressure which is nothing but 



proportional to log of concentration. So you can find more details in this paper as well, very 

famous paper. 
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So, with that, I summarize today that we have shown how to calculate the unimolecular decay 

rate constant using RRK model. Our model comprises a bunch of harmonic oscillators with a 

same frequency. And within that model, we have a few parameters. We need to find s, which 

comes rather adhocly, k minus 1 comes from collision theory, k dagger typically comes from 

high pressure limit of rate constant and E naught or Ea, which is the barrier height, come from 

either experimental data or electronic structure calculations. With these, you can calculate k2, k 

minus 1 and k1 and calculate this integral using a computer usually and calculate k1. Thank you 

very much. 


