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Hello, and welcome to module 40 of Chemical Kinetics and Transition State Theory. In the last 

two modules, we looked at our theory called RRK theory to look at rate constants calculated at 

constant energy. Throughout the course, we have been looking at calculating rate constants at 

constant temperature.  

Now, we have been asking the question what if we have a different ensemble, where the energy 

is constant, not temperature. In the last two modules we looked at a simple model, which we call 

as the RRK model. Today, we will do, extend that model and fill in the deficiencies of that very 

simple model. The model that I am discussing today is called RRKM model, which is Rice, 

Ramsperger, Kassel and Marcus. 
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So what I am teaching today is there in Steinfeld, Francisco and Hase in Chapter 10.7. I have 

also given you the original reference for those who are extra interested. So the history of this 

work is as follows. In late 1920s, ‘27 and ‘28, these three authors Rice, Ramsperger and Kassel 

formulated this theory for unimoleculer decay.  

They were trying to understand if a molecule is decaying at a constant energy, how do I calculate 

the rate constant and match the experimental data? And so we studied their efforts in the last two 

modules. But that actually does not work well and we discussed that as well. That is a very 

simple model with a lot of deficiencies. 

Enter Marcus. Marcus is really a pioneer in chemical kinetics. This was, he was doing a postdoc 

with Rice actually of this RRK, the R of RRK. And he was actually before they are doing some 

experimental work. But Marcus was a genius. And before like when he joined Rice as a postdoc 

he started looking at papers for the last several decades. He just started reading and reading and 

reading.  

And finally, Rice and one more person, they gave him this problem. This several decades ago in 

20s there was this problem of unimolecular decay that never got resolved. We do not know how 

to deal with it. Marcus, it took him basically only a few months and he solved this problem. And 

he published a few papers. One I have cited here in ‘52. He published a few more papers in ’53 

and that is it.  



After that Marcus changed his field and he was looking at electron transfer for practically a good 

portion of his life. But these few papers he published are authoritative works. They are the final 

word on this subject on unimolecular decay. And even today, you can open any physical 

chemistry journal, there will be at least one paper that calculates rate constant using this RRKM 

theory. So, let us study what Marcus had proposed. 
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So we will do a quick recap of what we covered in a long time ago in module 27. We wrote an 

expression to calculate rate constant at a given temperature earlier. We integrated over dividing 

surface over momenta. This is the density. This is a transmission factor that we have discussed 

for some time. And this is the finally the flux. Transition state theory assumes this rho to be the 

thermal density. This is the Boltzmann density.  

And for chi, we put chi equal to 1, if p1 is greater than 0, otherwise chi equal to 0. We put a very 

simple expression for chi and we assumed that we can derive transition state theory. This is the 

expression we get out of it. We are going to essentially follow this approach now. So this was 

really the genius of Marcus. This, since I am presenting in this fashion now I have told you the 

answer. It might look trivial, but it is not.  

When you have a flurry of ideas, what is the right way to think about it? What is the first 

equation to write? That is the question and that shows the geniusness. And Marcus said all right. 
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So I will write the same expression, perhaps I have to just use different values of this rho and chi. 

So this rho earlier was for at a given temperature. So, now I must use a rho at a given energy. 

And what he said is this is then equal to a delta function minus E. H of x comma p is the 

Hamiltonian, which represents the energy.  

So I am saying that rho at that given energy this Hamiltonian must be equal to that energy. And 

chi we will start with the same as transition state theory. Transition state theory after all is very 

successful. So chi is equal to 1 if p1 is greater than 0, equal to 0, if p1 less than 0. So that is 

going to be our starting point. This is the expression we want to simplify. 



So we have changed that density from a temperature density to a energy density. I have made a 

mistake. So let me correct my mistake. This should be normalized. Remember that even in the 

previous slide, our rho T was normalized. We had this full integral there. So we must write a 

similar integral as well here.  

That integral will now be dq dp delta of H of x comma p minus E. Because delta is essentially 

constraining those x and p points for which the Hamiltonian takes a value E, so the energy of the 

system is equal to whatever I want it to be. So just a, sorry, I had put in this nice animation that I 

had forgotten, but I have written what this rho is supposed to be. This is supposed to be E. 
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Let me give you a little bit of properties of this Dirac-delta function. This function here is called 

the Dirac-delta function. So this can get into very deep mathematical details, but I am not going 

to go into that. We are going to study only a few important properties of Dirac-delta function. 

First is what if I integrate Dirac-delta function multiplied by some other function.  

And let us say, I am sorry, let me write this as x naught and integral from a to b, this is equal to f 

of x naught if x naught lies between a and b equal to 0, otherwise. So the Dirac-delta function 

can be thought of as 0 everywhere. And, sorry, let me write delta of x minus x naught. And it 

takes a very, very large value at x naught. So it is zero everywhere, except at this x naught where 

it is growing up.  



So one other property I can write is if I integrate over all space, then I get f of x naught, because, 

well, x naught has to lie between minus infinity to plus infinity. And one final property that we 

will use today is that Dirac-delta function is Eigen, which would be obvious. If I invert it, I still 

get the same function. So Dirac-delta function is Eigen. 
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So before we move forward, actually, this expression here is much harder to evaluate than what 

we had for constant temperature believe it or not, because of this Dirac-delta function. It is not 

easy to deal with this, because this is H couples all these q and p. So it is not easy for me to 



simplify the integral over dp1. Earlier, we had e to the power of minus h that I could separate out 

the p1 term and integrate it out separately.  

So it is a slightly more complex. So I will have to introduce a little bit more language, a few 

more terms added to my language, so that I can simplify this expression a little bit more. So I 

define two quantities for me now. One is called g of E, which represents the density of states at 

energy E and W, which represents the total number of states with energy less than E.  

So if I am at a given energy E, how many, what is the density of states, how many states per unit 

energy are present at that energy that is g of E. And W of E is the total number of states that will 

be there between 0 to that energy E. So what I can do is start writing expressions for these, g of E 

is then given by an integral over dx, integral over dp, and delta of H of x comma p minus E.  

So I integrate over all space, all possible configurations of x and p and I find for what values of x 

and p is my Hamiltonian equal to the energy so that will give me the density, that will tell me 

how many states per unit energy are there. That is what delta is doing. So that you can think of as 

the definition of g. 

If this is the density of states and I want to find the total number of states between 0 and E, well, 

that task is simple. I must integrate g between 0 and E. g is telling me the density at that given 

energy. So if I want, go from 0 to E and integrate it out, I will get the total number of states, so I 

write this. And as a consequence, I can also write, g of E equal to dW over dE. So if I 

differentiate it, dW over dE, you see that I will immediately g of E. 
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So let us look at this expression of W little bit, dE prime g of E prime. Well, let us put in the 

expression of g. It is dx dp delta of H of x comma p minus E. Let me switch around the integrals 

a little bit. Now, look at this function, what do we get? This is equal to 1 if H of x comma p, 

sorry, this would be E prime, is less than E equal to 0, otherwise. Agreed, that is what this thing 

says. So if H is less than E, then I get 1, otherwise I get 0. 

Well, what does that mean? Imagine a graph of x comma p. Since I have a 2D screen, I can only 

make 2D plots. I have imagine some contour lines at given energy. This is let us say energy E1 

contour line, E2 energy contour line. E will have its own contour line. I am sorry, it is not E1, it 

is E. So this function that is there is 1 if I am inside this contour. F is one here, where I am 

calling this whole thing as f, agreed. Outside I have f frequency 0. 

So all I am doing is integrating over all x and p which is completely covered by this contour line. 

So this is nothing but the volume or the area whatever word you want to use of the contour H 

equal E. So I look at this contour for H equal to E in a higher dimension you will get this high 

dimensional surface and a look at the volume enclosed. So let me just say volume enclosed. So 

that is the physical interpretation of W. W is the area or volume occupied by face space and 

closed by this contour line. 
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So we will do one example. We will calculate g and W for a 1D harmonic oscillator. So my 

Hamiltonian, I have only 1D. Actually, I have made a mistake. Let me correct my mistake. I had 

forgotten my factors of H. Remember, this is an integral of x and p and an integral of x and p 

have dimensions. If you remember our discussion on partition functions, I have h to the power 

3N. That is what I had forgotten to write.  

So let me correct that. So this becomes a true density. I do not have any factors of h floating 

around. So we divide by h to the power of 3N, just like what we did in partition functions. I 

apologize, I had forgotten that. Let me correct all of these things here as well. I will have this 

divided by h to the power of 3N here as well, h to the power of 3N here as well.  

So volume enclosed divided by h to the power of 3N, so volume in units of h to the power of 3N. 

So that minor correction. So the Hamiltonian for a harmonic oscillator is this. So if I have to find 

W, I have to find the area enclosed by the contour line. So let us say this is equal to E. So, I have 

to draw the contour line for H is equal to E and find the area enclosed by this contour line. 

So you see this expression, this is actually an equation of an ellipse. So I will rewrite this slightly 

in this fashion. You notice, let me get my energy also in here, so let me correct that. So let me 

put my energy also in the denominator. So I have done nothing. I have just reorganized it, my 

equation here and make it look like an equation of an ellipse.  



So an ellipse essentially looks like this, where this is a and this is b. So, for me a is equal to 2E, 

root 2E over m omega square and b is equal to root 2mE. So I know the formula for area of an 

ellipse. So the area W of E will be nothing but area divided by h, I have only one dimension 

here, so h to the power of 1 is equal to pi a into b divided by h.  

Happily mass cancel. I get root 2E into root 2E which is 2 pi E divided by h omega. Well, I will 

get E over h bar omega, where h bar of course is h over 2 pi. You start seeing some good 

expressions, do not you? H bar omega is somehow related to harmonic oscillators quantum 

mechanically. 
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So let us move forward. Let us see what we get. Now, g of E is nothing but dw over dE. So this 

is equal to d over dE of E over h bar omega which is equal to 1 over h bar omega. So the density 

of states is 1 over h bar omega. Just think of quantum mechanics, quantum mechanically the 

energy is given as n plus half h bar omega.  

We get equal spacing like this quantum mechanically. So what it means is, even quantum 

mechanically, what is the density of states? I have one state per h bar omega energy. That is what 

this really means. If I look at 1 quanta of h bar omega, I will have one state in it, which is also 

what I get classical. So that was a little aside. 
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So now let me finish the proof of transition state theory at constant energy. Now that we 

understand is g of an E and a little bit of Dirac-delta functions. So we start with the expression 

that we wrote earlier. Let me just clarify a few things from earlier. Integral over dividing surface 

dq is nothing but it is a shorthand notation for dq2 to dq3N, HTS of q comma p is nothing but h 

of q1 equal to q1 dagger and all other variables are varying as they wish.  

So this is just shorthand notation just to keep my life simple, nothing more. So first let us look at 

what we had in the denominator. We had this. Now we have defined this g as a density. So we 

quickly noticed this n is nothing but g of E into h to the power of 3N. So my k becomes 1 over h 

to the power of 3N g of E into all this integral dq, dp1 dp2 to dp3N and delta of H minus E and 

p1 over E. 
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What do we do next? We are actually going to use the same set of approximations as we have 

used for deriving the transition state theory at constant temperature. So the next assumption I am 

going to make, sorry, if HTS is separable, so this is equal to I will say is equal to p1 square over 

2m plus V of q1 dagger plus H prime of everything else. So, again, that is also what we assumed 

when we were doing transition state theory that is the same thing we do now.  

This is nothing but Ea. So what we get, I get these constants out gR of E. One thing I had 

forgotten to mention, this n that I am calculating is only over the reactant Hamiltonian, just like 

we did in transition state theory. So I write for that only gR. Just to signify that I am integrating 



only over the reactant side and not on the product side. I have still this giant integral that takes 

me 100 minutes to write, dp2 integral of dp3N delta, now H, I will expand, H prime as a function 

of all this minus E. Have we, are we really achieving anything? Let us see. 
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So we get this big expression. Now we will do a little bit more mathematical jugglery. Just a 

little bit of hocus pocus. We will transform our variables now. I am going to define an E dagger 

as E minus p1 square over 2m minus Ea, hocus pocus, abracadabra. So dE dagger is equal to, E 

is a constant, remember I am calculating everything at that energy E, minus p1 over m dp1, Ea is 

also a constant, so da dagger equal to this.  

So this is the one I am looking at. You see p1 over m dp1 here. I get the same thing here. That is 

why I did that transformation. Now, if p1 is equal to 0, E dagger equal to E minus Ea. I am trying 

to find my limits. What is the maximum value E dagger can take? Note that I have a delta 

function sitting here. So I claim the maximum value of E dagger is the, the minimum value of E 

dagger is only 0. So imagine I have my reaction coordinate.  

I have E here. This is Ea. This here is let us say p1 square over 2m. This is then E dagger. So, E 

dagger is E, total energy E, minus Ea minus p1 square over 2m. So, E dagger cannot be less than 

0. Why, because I have this Dirac-delta function sitting here. H prime is positive. So, if E prime 

is less than 0, this Dirac-delta function will immediately become 0. So, I mean any negative 0. 

So what I get here is then 1 over h to the power of 3N gR of E dividing surface dq.  



So this integral becomes E minus Ea to 0, I notice this thing, is minus dE dagger integral of dp2 

to dp3N that I am not touching into delta of H prime minus E dagger. I take this integral, I play 

around with it a little bit, I take this minus and invert the limits, Integral over dividing surface dq 

integral from dp2 to dp3N delta of H prime minus E dagger. So let us just look at this expression. 

What is this equal to? You note that, let me erase a little bit stuff here.  

I am out of space. So I am just erasing. So, I noticed that this integral is nothing but g of E. So 

this is then equal to 1 over h to the power of 3N gR of E integral from 0 to E minus Ea, de 

dagger g of E dagger. And I have put a little dagger here. Sorry, this is supposed to be g E prime. 

It was, something is not, I am sorry, I am getting confused myself. Happens with me. I will 

correct it all of it. Now I am perfect. Now this is right.  

And I have a little dagger here to denote that this integral does not involve integral of q1 and p1, 

this is an integral from q2 to q3N and p2 to p3N. Look at this. It does not involve integral of q1 

and p1. That is why I have put a dagger here to remind you of that. And I look at this integral and 

I see this. So this is nothing but h to the power of 3N. I apologize again, this I should multiply by 

h to the power of 3N minus 1, because I have this factor here.  

So I have this integral and this integral into h to the power of 3N minus 1 will give me g. So I get 

h to the power of 3N minus 1 into W again dagger of E minus Ea. So that is my integration limit 

here. So at the end, I get W dagger of E minus Ea divided by h into gR. This E minus Ea, 

because of this limit. So whatever is the limit here comes here. That is why I put E minus Ea. W 

dagger again denote that the integration is only from q2 to q3N and p2 to p3N. And this factor of 

h dN minus 1 emerged, because I had a division by h to the power of 3N here. 
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So this is really the final expression. For the microcanonical transition state theory now, this 

expression looks like W dagger of E minus Ea divided by h into gR of E. And the list of 

assumptions is very similar to what we had made earlier, transition state exists, nuclei have been 

treated classically, we are integrating over q and p, there is no re-crossing, so the chi that we 

choose is the same as before. 

What we, when we write this delta function, what it assumes is that all energy states are equally 

possible. So, I am not discriminating between two points in face space having a same energy. 

They are equally possible. That is called Ergodicity. It has profound consequences to 

thermodynamics and statistical mechanics. So I have listed it here. And final assumption is that 

Hamiltonian is separable at transition state geometry. So following the same set of assumptions, 

we derive the expression for the transition state theory at constant energy. Thank you. 


