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Hello, and welcome to module 39 of Chemical Kinetics and Transition State Theory. This is 

really a continuation of the last module. In the last module, we discussed a simple model to 

calculate rate constant at a given energy and we took a little detour of permutations and 

combinations and today we will apply these permutations and combinations to calculate rate 

constant. 
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So a little recap of what we looked into the permutations and combinations. The number of ways 

of putting exactly j identical balls, so let me just write identical to be more precise, in s distinct 

containers is given by this expression, this factorials. And number of ways of putting up to j balls 

in s containers is given by this expression. 
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We had also discussed a simple model of calculating rate constant at a given energy. The rate we 

assume is proportional to the probability that E1 which is the energy mode 1 is greater than Ea, 

which is some activation energy, a parameter in the system for our problem.  



So let us assume that the total energy E corresponds to some quanta jh nu and Ea is given by 

some m quanta of energy. So what we are really asking is, what is the probability that if I 

distribute j quanta among s oscillators, so one thing I have forgotten to mention here or recap, 

there are s oscillators. And so we are putting these j quanta in s oscillators and what is the 

probability that the first mode will get m quanta or more. 
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So today we are going to calculate this probability. So we have to get back to our PNC to 

calculate this probability. What we are doing is we are looking at j quanta as essentially j balls, j 

identical balls. All quanta are identical. We cannot distinguish between two different quanta of 

energy. S oscillators represent to me s boxes.  

So the problem is of putting j identical balls in s distinct boxes, containers. Let me just use the 

word container because that is what I have used so far. And I am asking you what is the 

probability that first mode gets more than m balls? So how do I calculate this probability?  

This probability is given by a number of ways of putting j balls, they are all identical, so I am not 

going to repeat identical all the time, of putting j identical balls in s distinct containers with first 

container, so these are distinct, first container having greater than or equal to m balls divided by 

total number of ways of putting j balls in s distinct containers.  



So that is how you calculate probability. In the denominator you put all possibilities and in the 

numerator you put only favorable possibilities. So the numerator contains all possibilities which 

has m or more balls in the first container and the denominator has all possible ways of 

distributing. We find the ratio that is simply my probability. 
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So let us calculate the denominator and the numerator. The denominator is rather trivial. So let us 

calculate that first. We like doing easy things first. So denominator is simply the total number of 

ways of putting j identical balls in s distinct containers. Here, we already calculated it last time. 

So this is simply equal to j plus s minus 1 factorial divided by j factorial s minus 1 factorial, 

good, done. 
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Numerator, this is slightly tricky. So we will be careful. Numerator is number of ways of putting 

j balls in s containers with the first container greater than having more than or equal to m balls.  

There is supposed to be a space here. So how do I do this? This is again a puzzle for you. You 

can take a little pause and try to calculate this on your own.  

If you like solving these kind of permutations and combinations. I find them a lot of fun. So I 

have a s containers with me and I am asking the question, this one should have more than or 

equal to m balls and I have a total of j balls, how many ways can I arrange this so that the first 

one have at least m balls? Well, the answer is actually simple.  

The total number of ways the numerator is nothing but total number of ways of putting less than 

or equal to j minus m balls in s minus 1 containers. So, the first one has m or more, which 

implies that the rest of them combined have j minus m or less. If the first box has m balls, the 

rest of them will have j minus m exactly. If the first one has m plus 1, the rest of them will have j 

minus m minus 1.  

So the maximum you can put in this s minus 1 containers is j minus m, so it will be less than or 

equal to j minus m. You can have 0 as well. I can perhaps put all of the balls in the first container 

that has also a configuration. So this thing, well, is this one with j replaced with j minus m and s 

replaced with s minus 1. So I get j minus m plus s minus 1 factorial divided by j minus m 

factorial s minus 1 factorial. 
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So now I have the numerator and I have the denominator. So, I will find the probability now as 

the division of the two. Factorial s minus 1 factorial divided by j plus s minus 1 factorial divided 

by j factorial s minus 1 factorial. You notice at least one term cancels. That is good news for us. 

So what I am left with is j factorial comes to the numerator. 
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Now we are going to make an approximation. So far what we have done was an exact 

permutation and combination, but we lead to these factorials which do not simplify anymore. But 



we can simplify things a little bit if we use this thing called a Stirling approximation here. This is 

true only when n is large. So what we are going to assume essentially is that j is large.  

We have a lot of energy. So what we are working today this RRK model holds only when there 

is a lot of energy. That is our first approximation. We are going to make one more. So we are 

going to use this n factorial equal to n to the power of n over e to the power of n. So let us write 

things very, very carefully, to the power of j minus m plus s minus 1. And I will have a 

corresponding exponential as well.  

Exponentials I am going to write here, e to the power of j minus m plus s minus 1. So this is n to 

the power of n term. This is e to the power of n term. I have j factorial now. J factorial gives me j 

to the power of j divided by e to the power of j. J minus m factorial will give me j minus m to the 

power of j minus m into exponential of j minus m. J plus s minus 1 factorial now is j plus s 

minus 1 to the power of j plus s minus 1 into e to the power of j plus s minus 1. 

Let us look at the exponential part for a moment. This is equal to e to the power of j minus m, 2j 

minus m plus s minus 1, I am adding these two together, divided by e to the power of 2j minus m 

plus s minus 1, I am adding these two together in the denominator. Well, that is equal to 1. So 

something good happened at least. And I am simply left with this term. 
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What do I do now? It is still a very complex term. Our next assumption is slightly more intricate. 

We are going to assume j minus m is much, much greater than s minus 1. This assumption 

essentially tells what is j and m, let us remind ourselves, j represents total number of quanta, m 

represents required quanta for mode 1. So, this difference is available quanta basically. So m is 

the necessary quanta. So I am saying I have a lot more quanta than you absolutely require. 

In short, if this is my reaction coordinate and this is Ea, I am saying that the total energy is much 

more than Ea. So E represents a total quanta available and Ea represents the quanta that is 

absolutely necessary. So I am saying E is much, much greater than Ea. In fact, it is much, much 

greater than this difference compared to the number of possibilities I can distribute against. So 

that is the approximation we make. 

Under that approximation, if this is true, I can also assume j is much, much greater than s minus 

1 as well. If this is true, this is of course true, m is remember positive. So what I am going to do, 

these are, slightly you have to be careful when you make these approximations only in the bases 

here. I will make the approximation. So I will assume j minus m plus s minus 1 is approximately 

j minus m. S minus 1 is negligible, but only in the base. 

Remember, when you take powers, you still have a much larger effect of the errors. So we do not 

make this approximation in the power, but only in the base. What I am saying effectively is, 

instead of saying it is 10 to the power of, let us say 100 to the power of 100, it is 99 to the power 

of 100. But if I make it 99 to the power of 99, then I am introducing a much bigger error. The 

powers make a much bigger impact is what I am saying. 

So I approximate this as j minus m to the power of j minus m plus s minus 1. I retain j to the 

power of j, I retain j minus m to the power of j minus m. And this term I replace j plus s minus 1 

as j. So I get j to the power of j plus s minus 1. So let me put it here, because I need more space 

there. So this is then equal to j minus m to the power of s minus 1 divided by j to the power of s 

minus 1. You notice that this is j minus m, this is j minus m.  

So I can take them together and you see j minus m will cancel here. Similarly, this is j to the 

power of j and j to the power of j plus s minus 1, so I simplify that. This is j minus m divided by j 

to the power of s minus 1. So, things have simplified a lot now. 
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Now, we will get back to the language of energies. Remember that energy, the total energy we 

said is equal to jh nu and E naught is mh nu. So I come back to this equation and I multiply by h 

nu in the numerator and in the denominator. So, h nu j is nothing but e, h nu m is nothing but E 

naught, E. 
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So, finally, remember that the rate is considered proportional to the probability that E1 is greater 

than Ea and that probability we have shown to be approximately equal to this E minus Ea over E 



to the power of s minus 1. So, the rate is then proportional to this probability. So I put some 

proportionality factor, sorry, where k dagger is a proportionality constant. 
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So, this is really a very, very simple model. This was came in 1920s and it is not very well used 

today, but it is still very instructional. It is instructional because when you do science, what you 

do is to really come up with the simplest possible model that you can think of. Real life is 

extremely complex and modeling it directly is extremely hard. And so this is how we always 

begin. We always begin with simpler models.  

And if that does not work, then we will better models. So I wanted to show you this model, so 

that you know how models evolve. We do not come up with the complex models out of the blue. 

We come up with building simpler models and developing over them. So this model, of course, 

has a lot of problems. First of all, for a real molecule, a real system what is s exactly? Not easy, 

not easy to tell. Second, we just said that all modes have equal frequency.  

You must be shouting out at me by now. How can I possibly assume that index of course is bad 

assumption? You think of water molecule. The two bends are like 200 or 300 wave number and 

one stretch is 2000 wave numbers. Any spectroscopist will tell you that there is a huge variation 

in different frequencies. So, of course, that is a bad approximation. 



What happened to rotations and translations? I completely forgot about them, did not I? That 

have also be included. Remember that transition state theory at canonical ensemble, we did 

rotation partition function too and that plays a big role. We do not have that here. We have 

simply vibrations. We just started saying we have a harmonic oscillators, but that can be 

questioned as well. 

And finally, I just introduced this factor at the end and said there is a proportionality factor k 

dagger. Again, you must be screaming what are you doing? How do I calculate this k dagger? It 

is actually in, within this model it cannot be calculated. It simply a parameter. So this is really a 

simple model and we need a more inclusive and general approach and that approach come from 

transition state theory. 

So, remember this came in 1927 and ’28. Transition state theory came in 1935. So after 1935 in 

transition state theory in canonical ensemble when that was developed, then people use that 

theory to build upon constant energy version as well. That was done by Marcus in the 1950s, I 

believe, I will have to double check once more. And that is what we are going to discuss in next 

modules. 
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So today what we have discussed is very simple model, the RRK model, to calculate rate 

constant at constant energy. Within this model, we derive rate constant as k dagger into E minus 

Ea over E to the power of s minus 1. And the model, the important approximations that we make 



is that the system has s oscillators all with the same frequency nu and the rate, this rate was 

estimated as the proportional to probability that mode 1 gets energy more than Ea. This one I 

have capitalized, let me make it small. That is a typo. 

And along the way we made one more approximation that we have large energy E is much, much 

greater than Ea and much greater than s minus 1 actually. So j minus m is much, much greater 

than s. But we need a more general theory that we will develop in next module. Thank you very 

much. 


