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Hello and welcome to module 27 of Chemical Kinetics and Transition State Theory. This really 

is a continuation of the last module. What we discussed in the last module is a very general 

formula to calculate rate constants with minimal assumptions. Today, we are going to take 

forward that formula and make a few more assumptions to get to the transition state rate. So, 

again what we are doing is a different derivation of transition state theory from a dynamical 

perspective. Earlier we had derived it from statistical mechanics, now we are deriving it from 

direct dynamics as flux across a dividing surface or the number of trajectories passing per second 

across a surface that divides reactants and products that is what our rate is. 
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Again, the work I am following, you can either find in Steinfeld, Francisco and Hane, Chapter 10 

or this excellent paper by Bruce Mahan in Journal Chemical of Education, you can also find the 

same arguments there. 

(Refer Slide Time: 01:31) 

 

So, in the last module, we ended with this particular formula for rate constant. We had integrated 

over all coordinates that is not the reaction coordinate. So, we have one coordinate that we call 

the reaction coordinate. So, this is an integration over dividing surface. So, I am sitting at a 



transition state, one coordinate is my reaction coordinate. Every other direction is perpendicular 

to this and constitutes my dividing surface.  

So, I am integrating over all this dividing surface. This is, here is reactant, here is product and 

this is the surface in between. I am integrating over all momenta. D here, tells me density at 

transition state. So, I have used a little bit of short hand notation, what this is, is exactly q1 equal 

to q1 dagger, that is q1 is set at the transition state and all other coordinates. So, this is my 

density per unit length along q1. 

So, I have my q1 here. This is my dividing surface here. So, I am looking at the density in this 

direction, how many particles will fall into this little region. Chi is what we defined as 

transmission factor. That is, if I am at a transition state at some point with some speeds or 

momentum, what is the probability that that point originated from the reactant and will end up in 

the product.  

So, we are only interested in the forward reaction of going from reactant to product. And this chi 

tells me that this coordinate point, q comma p, is it coming from the reactant in the past and will 

it end up in the product in the future. And finally, this u1 equal to p1 over m is nothing but the 

flux, that is a technical language we use. But that basically tells me how many trajectories per 

second will go through. 
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So now, let us think of calculating this D tilde. So, this again is the number of particles per unit 

length along q1. So now is when we will start making a little bit more assumptions, here we are 

going to assume we have thermal equilibrium. So, at thermal equilibrium, we have seen the 

equilibrium density. Equilibrium density is given by, at any given point, this big integral over 6N 

dimensions. Now, I have to find the number of particles per unit length along q1 only. 

So, let us be more clear what I mean, I should have dq1 to dq3N into dp1 into dp3N, that is really 

the probability density. I should always have these infinite symbols with me. So, the number of 

particles per unit length along q1 is nothing but rho eq over dq1. So, this is what D tilde really is, 

if I am looking at the direction of q1 and finding the number of particles per unit length.  

So, I have to divide by dq1, so I eventually get and I set q1 equal to q1 dagger. So again, I am 

calculating this D tilde at the transition state and the transition state is specified when q1 is equal 

to q1 dagger, when the reaction coordinate corresponds to the transition state geometry, Q3N, p1 

to p3N, dq1 disappears and I get dq2 to dq3N, dp1 to dp3N divided by this big integral, e to the 

power of minus beta H q comma p. We have made some progress, we have a sense of what D 

tilde is.      
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Let us just look at this denominator for a moment. One important thing that I want to bring about 

this denominator is that this does not integrates over all coordinates. This is a hard concept to 

understand. Remember what we are doing, we are looking only for transitions that occur from 



reactant to product. To do that, we basically get rid of all population on the product side. We 

only have population in our reactants and we are looking at how many trajectories are becoming 

products. So, this integral that we have we integrate over only coordinates corresponding to 

reactants. That is very important to understand that this integration is not over all possible 

coordinates. All possible coordinates will include both reactant and product. 

So, we integrate over reactant configurations only, because we are interested only in one sided 

flux. We are looking only from reactant to product forward rate only. To calculate forward rate, I 

do not want anything to be there in the product side. I want the entire thing to be normalized in 

the reactant side only. What I am going to do is write this thing as e to the power of minus beta 

HR, just a notation. So, this thing is exactly the same as this thing, just a notation, just a short 

hand way of writing things. 
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So, the next question I have to answer is, how do I estimate this chi? Actually, that is a very hard 

question. We are going to make a very simple assumption and this hopefully will help you 

clarify what transition state theory really is. We assume chi is a big factor which depends on q2 

to q3N, p1 to p3N, this is 1 if p1 is greater than 0, this is equal to 0 if p1 is less than 0. Let us 

make is equal as well to be more general. 

So, this is the transition state theory approximation, one of the central approximations that is 

made in transition state theory. That is, if p1 is positive, p1 again is the momentum along the 



reaction coordinate. So, this is my q1, this is my dividing surface. If I have a momentum in the 

positive direction, then I am reactive, then I must have come from reactant in the past and I will 

end up in the product in the future independent of whatever this q2, q3, q3N is or whatever this 

p2, p3, p3N is. I do not even care about what their values are. I only look at p1, I see if p1 is 

positive you are traveling forward then you will end up in the product. If p1 is not less than 0, 

you are coming in the opposite direction, you are not allowed. So that is the essence of transition 

state theory. 
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So, we have our formulas for D and chi and all that is needed is to put into this big integral. So, 

let us see where that goes. So, this chi, here will be 1 only if p1 is greater than 0, otherwise it will 

be 0. So, I changed the integral over p1 from 0 to infinity. Because if p1 is less than 0, chi will be 

equal to 0 and that will not contribute at all to the integral and then I can get rid of chi to be 1. If 

p1 is greater than 0 then chi is 1. 

Now, what I will do is, I will look at this H and simplify. I will assume the separability of the 

momentum of the reaction coordinate, I am separating up just the momentum of the reaction 

coordinate only. I will also take out the constant energy Ea, I will just specify what Ea is, please 

give me a moment, of q1 dagger, q2 to q3N, p2 to p3N. So, I have taken the momentum one out 

only. Ea is essentially the minimum of H, of this. So that is your activation energy really, 



because transition state structure is the minimum structure along all directions perpendicular to 

the reaction coordinate. 

So, if I look at this H, where q1 is fixed at a transition state geometry and I am varying all their 

geometries, then transition state is the minimum, not maximum. This is a very common 

confusion. This is the minimum energy structure on this H. So, Ea is the energy of this transition 

state and that is your activation energy. Ea is the energy of the transition state. 

So, if I do that, this k, what I will do is just separate out the p1 term, e to the power of minus beta 

p1 square over 2m into p1. So, I have taken this integral from e to the power of minus beta H, I 

have taken this term out. And this p1 over m, I have separated out. And I leave everything else as 

it was. So that will be integral of dq2 to dq3N, dp2 to dp3N, e to the power of minus beta H TS 

with all the coordinates which I am not writing for simplicity divided by the N and N is integral 

over all coordinates corresponding to reactants only dp, e to the power of minus beta HR.  

So, this integral basically means integrating over all coordinates corresponding to reactants and I 

should not forget e to the power of minus beta Ea. So Ea is a number. It is not dependent on any 

coordinates and so, I take that outside the integral. 
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So, I arrived with this big formula. I have written it out explicitly. And once more in the 

denominator here, in this integration, this corresponds to reactant coordinates only. So, this is an 



integral that I can actually do. This formula I have provided you here. I will look at this formula. 

I will think of a as beta over 2m. So, this will be 1 over m, that I will take constant out into 1 

over 2a, 1 over 2 into a, a is beta over 2m, 2, 2 cancels, m, m cancels. So, this integral is equal to 

1 over beta which is nothing but KBT. So that is an easy integral for you to do given that this 

formula is provided. So, I substitute that integration as KBT. 
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Now, we realize that the partition functions really look like these integrals. So, the partition 

function in 3N dimension is really defined as h to the power of 3N, 6N, sorry, dq1 to dq3N, dp1 

to dp3N into e to the power of minus beta H. So, if I look at the denominator, e to the power of 

minus beta HR, this is nothing but h to the power of 3N into q reactants. Q reactant really by 

definition is the partition function of reactants only. So, I am integrating only over the coordinate 

of the reactants and this h to the power of 3N I have taken here. 

Similarly, the numerator is h of the transition state, h into 3N minus 1. Note that one integration 

is less here. I have 3N minus 1 coordinates only. So once more, transition state partition function 

is one dimension less compared to the reactants into Q of transition state. So, if I put it here, I 

will get h to the power of 3N minus 1, Q transition state, divided by h to the power of 3N Q 

reactants, but you, I cancel lot of h, so I get KT over h Q transition state over Q reactants. 
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One final thing we have to be careful about, this formula really looks very close to what we have 

derived earlier from statistical mechanics. One tiny detail that is missing, what we have derived 

is rate per unit second. So, I am sitting at a dividing surface and simply counting the number of 

particles that went through in one second. But that is not what exactly rate constant is.  

Remember, rate constant is the number of particle passings through per unit volume. So, the rate 

constant is frequency per unit volume. But that actually has a easy remedy. All we do is find the 

partition functions per unit volume, where my q naught is Q over V. So, I find the reactant 

partition functions per unit volume, I find the transition state partition functions per unit volume. 

That is all that I have to do then to get to the rate constant per unit volume. 
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So, we end up getting the very famous formula that we had derived earlier. We get KT over h 

into q transition state divided by qR naught. We have been writing it for bimolecular where it 

becomes qA naught into qA naught, but to be honest, it always has been qR naught. We just have 

been looking reactants as A plus B into the Arrhenius exponential. But now we have this 

derivation from a very different perspectives. 

Now, we have a much more intuitive way of deriving this which is that I have a dividing surface. 

This dividing surface separates a reactant from the products. Look at all possible positions on 

this dividing surface and look at the positive flux across this dividing surface that is really what 

all rate is, the number of particles passing per unit second, per unit volume across this dividing 

surface. Thank you very much.       


