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Hello and welcome to module 13 of Chemical Kinetics and Transition State Theory. We have 

discussed the collision theory quite deeply now over the last 7 or 8 modules and we are near the 

end of it. We are soon going to begin transition state theory. But before we do that, I want to 

spend little bit of time on one very interesting topic, which is what is called detailed balance or 

the idea of thermodynamic equilibrium. So it is a very interesting comment. 
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You can find a very beautiful paper written by Bruce Mahan in 1975, titled “Microscopic 

reversibility and detailed balance.” What I am covering today in the next maybe 15 20 minutes, 

is a much simpler proof than this provided in this paper as applicable to collision theory. But for 

those who are interested can go to this paper and read the full proof, it is very readable and you 

have enough information to be able to go through this actually. So the more interested readers 

can look at this paper. 
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So what is it that I want today? What I am trying to calculate is not the rate constant today but 

equilibrium constant and something interesting pops out when we do that. So let us say, I have 

the wrong color of the pen somehow, I will change the color. I have A plus B and let us say the 

reaction is reversible it is C plus D. I have forward rate; I have a backward rate. Well what is the 

big deal? I can calculate both forward rate and backward rate using collision theory, I have 

assumed bimolecular on both sides. 

If that is the case, my forward rate is given by this equation that we have derived and used 

multiple times in the last few several modules. But I can also write a backward rate as rc plus rd 

square, I do not know what their radii are, they might have changed. When the collision happens, 

some mass might transfer from A to B and the radii can change; root 8kT over pi mu cd e to the 

power of minus A and mu activation energy can also change, so I am keeping everything as 

general as I can and K equilibrium is k f over kb. 

So this I just divide these two, when I do that you see the pi cancels, I have rA plus rB, I take in 

the square root, I have a lot of common terms 8kt over pi cancels and I get e to the power of 

minus what I will call as delta E naught over kT, where your delta E naught is simply Eaf minus 

Eab. So that is eventually the potential energy difference between reactants and products, delta E 

naught. I have some equation. Then I play around with this equation a little bit more let us see. 
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Remember what we are assuming here is Newton’s Laws and Newton’s Laws conserve what is 

called the angular momentum. So we are going to calculate forward angular momentum and the 

angular momentum of the products and equate those two. So let us see how we do that. We have 

A moving forward colliding with B, this two in general have different radii. So this is A, it has 

moved from here to here. This distance is rA plus rB and let us say this angle is theta and I am 

drawing straight lines apparently but this is a straight line.  

Angular momentum is defined to be r cross p, r here so this thing is nothing but magnitude of r 

magnitude of p into sin theta, where theta is the angle between r and p. And I am finding the 

angular momentum at the point of collision. I can do it before as well, it does not matter, actually 

you are going to get the same answer, angular momentum is after all a conserved quantity. 

So r is rA plus rB, that is your r, that is the distance between the two centers, p is a mass, for mas 

remember I should use mu, the reduced mass into u, because u is the relative speed and for 

relative speed again we derived all of this in detail, you get the relative mass. And at the reactant 

side it is mu AB and let me call this as u AB sin theta. So this is the forward angular momentum. 
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I can do the same thing in the backward side as well. So what I mean by the backward side, right 

after the collision has happened, the mass transfer has happened, I have this as, so this came like 



this as A here, this is B right now and after the collision this goes like this and it becomes D, this 

A gets reflected like this as C.  

So if this is theta the reflection will be equal according to Newton's Laws. So the angular 

momentum right after collision, when the mass transfer has happened, my radii have changed, so 

again in collision theory effectively we are assuming all this is happening instantly, I go from 

radii rA and rB to rC and rD and masses mA and mB to mC and mD.  

So I can write the same kind of angular momentum now as r cross p which is mod r mod p and 

sin theta, that angle is the same theta. This r is now rC plus rD, the distances have changed and p 

has become mu CD u CD sin theta. So my speeds have changed, my masses have changed, my 

radii have changed, so I calculate the new angular momentum, that is alright.  
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But angular momentum, however you want to transfer masses, whatever you do, angular 

momentum is none the less a conserved quantity. So I equate the two angular momentums that I 

have calculated, this should have been AB, this should have been CD. So this theta terms cancels 

and I get mu AB rA plus rB u AB equal to mu CD rC plus rD u CD. And as is common I am 

going to take essentially a thermal average here. 

Instead of u AB I will write the thermal speed of AB which is root, this is what we do really in 

collision theory, pi mu AB this is equal to mu CD rC plus rD, some terms will cancel 8kT over 



pi, 8kT over pi and I will get rA plus rB divided by rC plus rD this is equal to, you will notice I 

have a full mu here and a root mu, I can simplify all of that and this will become to mu CD over 

mu AB. A very powerful relation, the radii have to be related, they cannot be arbitrary because 

angular momentum is conserved.  
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So earlier I had derived K equilibrium to be this big equation rA plus rB square all this thing, just 

few slides ago and now we have found a relation between the radii. So I am going to substitute 

this equation here, so this will become equal to mu CD over mu AB and you notice I have a 

square root of mu CD over mu AB here, so this become to the power of 3 half. 

So according to collision theory, your equilibrium constant is given by this. It is actually 

independent of the radii. If you could tell me the masses, if you tell me the reactants and you tell 

me the products and you tell me the difference between the potential energy between the 

reactants and products, I can calculate you the equilibrium constant.  

By the simple proof but a very, very powerful, it goes somewhat deep and once we discuss 

transition state theory and partition functions, this we will revisit then in the language of partition 

functions. So there is more about this that we come to later. 
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One comment that I do want to make today itself is relation with Gibb’s equation. So Gibb’s 

much earlier had written an equation that relates the equilibrium constant with the free energy 

and Van’t hoff’s equation actually comes out of this. So let us relate, I have a equilibrium 

constant from collision theory and the equilibrium constant from Gibb's equation. Let us do I 

little bit of our thermodynamics. So that is how delta G is defined. 

In our case we have A plus B going to C plus D. In this case, what is the, and this we will 

examine in more detail delta X naught you can basically convert to delta E naught. You have to 

be a bit careful, factor of RT and pv might be there, so I will leave that to you. But let us just 

ignore constant factors right now, let us say this is delta E naught.  

So if I put it in the Gibb's equation, you will see this is equal to and if I compare these two 

equations, I get something interesting, I get delta S naught is R into ln of, 3 half mu CD over mu 

AB. So actually collision theory is also commenting on change of entropy. Simple theory just 

particles colliding and the power of thermodynamics is can come in and you can use all these 

equations in thermodynamics and comment a lot more.  

So I will end with this today and again this in a few more modules, once we have a better idea of 

transition state theory, we will come back to this.   
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In summary, what we have done today is looked at deriving the equilibrium constant from 

collision theory and commented on the change of entropy of a reaction based on collision theory. 

So this is not a, we will see actually that this is, there is a mistake here and transition state theory 

is going to correct that mistake. Thank you very much. 


