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Hello, welcome to the lecture number 31 of the course Quantum Mechanics and Molecular 

Spectroscopy. In the previous lecture, we were talking about the harmonic oscillator and its 

selection rules. So we will continue with the same topic. 

(Refer Slide Time: 00:33)

So, if you have a molecule or A, B molecule has a potential something like that. So this I will  

call it as 0 and this will be sum v 0 and there is equilibrium distance re that is if you construct 

bond A,  B. The equilibrium distance  is  re  and this  is  the potential  energy function  as a 

function of R this is nothing, but the potential energy. So at the bottom of this (()) (01:21) one 

can write the potential as a Taylor series expansion.

So your v is equal to at equilibrium is nothing but v 0 – d v / d R at re into R + 1 over 2 

factorial is nothing but 2 d square v / d R square at re evaluated at re is R square – 1 over 3  

factorial d cube v / d R cube evaluated re into R cube + 1 over 4 factorial d to the power of 4 

v / d R to the power of 4 evaluated at re R to the power of 4 + etcetera. Now, one can always  

measure energies with respect to some value.

And if that value is v 0 so measure energies relative to v 0 that means if I measure energies 

with relative so I can equate this to be 0. Now the second thing is d v / d R we are at the 



bottom of the potential so when you are at bottom of the potential the first derivative will go 

to 0. So this will go to 0 because bottom of the potential are same as minimum energy in the 

potential. 

Then you are left with and if I ignore higher order terms that means I will ignore third order 

higher order means third order which is this order 3 fourth order which is this. So if I ignore 

that okay ignore means basically going to 0. So, what I will do is I will also take this to 0 and 

this to 0. So what I am left with v = 1 / 2 d square v / d R square evaluated re R square where  

R is the intermolecular distance or interatomic distance in this case. 
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So, if you have a potential where R is the interatomic distance then what you have is the v 

equals to 1 / 2 d square v / or approximately = d R square at evaluated re R square. This I will 

write it as 1 / 2 k R square where k is nothing, but d square v / d R square evaluated re and 

now if you write the total energy Hamiltonian H is equal to – h bar square / 2 mu del square  

R where if you have A and B connected and mu is nothing, but m A m B divided by m A + m 

B.

And R is the coordinate so this R is nothing but internal coordinate + 1 / 2 k R square. So this 

is  my Hamiltonian  for  harmonic  oscillator.  Now harmonic  oscillator  is  just  a  model  that 

represents a A, B bond. 
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Now  one  of  the  problems  with  harmonic  oscillators  is  that  so  when  I  draw  harmonic 

oscillator, harmonic oscillator is with respect to sum re and it should something like that. So 

harmonic oscillator never breaks the potential can raise up to infinity, but all chemical bonds 

between molecule atom A and B they will break eventually if you keep stretching they will 

break. 

So,  harmonic  oscillator  in  some sense is  not  a  good representation  for  a  chemical  bond. 

However,  at  the  bottom  of  the  potential  that  means  around  the  equilibrium  geometry 

harmonic oscillator is a reasonably good model and we use harmonic oscillator to represent 

bonds when they are at the equilibrium position. 

Now if you have this harmonic oscillator then of course your Hamiltonian as I just said is 

nothing but – h bar square / 2 m del square R + 1 / 2 k R square and where k is nothing but d  

square v /  d R square evaluated  at  re.  This is  nothing but  your  force constant.  Now the 

problem here is the following. The thing is that this force constant is only the second order 

term.

And in such case we are ignoring the higher order terms the third order and the fourth order  

terms  which  in  normal  molecule  or  in  normal  diatomic  molecule  A  B  would  have  or 

harmonic oscillator is an approximation. Now, if a harmonic oscillator in approximation and 

we know R is just a dummy variable. So, I am going to rewrite this whole thing in some other 

variable x.
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So instead of R I can always use another variable x and that would be – h bar square / 2 mu 

del square x + 1 / 2 k x square this is going to be my Hamiltonian H vibration. Now you have 

this Hamiltonian one can solve for it there are two methods to solve this. One is called ladder  

operator  method and other  is  the series  method.  So, essentially  you are going to solve a 

second order differential equation. 

So this can be written as – h bar square / 2 mu d square / d x square + 1 / 2 k x square this  

into some function chi of x H vibration on into chi of x = E chi of x that is going to be a 

solution  for  it,  but  when you  solve  by either  of  the  method  whatever  one  can  solve  by 

whichever is convenient method and there are textbook like molecular quantum mechanics by 

Atkins or quantum chemistry by Ira N. Levine where you can find the solutions.

You  can  use  either  of  the  method  and  of  course  it  is  only  one  differential  equation  so 

depending on which method you use or the solution that come out should not depend on the 

method that you use. Now I am just going to write the solution so when you solve this using 

one of these two methods what you get is the following. Your chi of x will depend on a 

quantum number v that is a vibrational quantum number = E v chi of x. 

So that is going to be your quantum number where it can show that E v = v + 1 / 2 h nu e 

where nu e is  nothing, but 2 pi omega e where nu e is  frequency and omega is angular 

frequency, but there is one thing that you must understand that there is this value k and this 

value k and this nu e should be related in some way. Sorry this is not that should be a right 

one.



So how is it relate so the k that is the force constant is related to mu omega e square or this is 

nothing but 4 pi square mu nu e square. So the force constant k is proportional to nu e square. 

So that means the vibrational frequency is proportional to square root of the force constant 

that means if you increase the force constant vibrational frequency will increase. So that is 

what  we already know so if  the bond becomes  more  stiffer  the vibration  frequency will 

increase. Stiffness is measured by the force constant. So this is a measure of stiffness of a 

bond. 
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So what we are going to solve the Schrodinger equation at hand for the vibration H vib chi v 

of x = - h bar square / 2 mu d square / d x square + 1 / 2 k x square into chi vibration of x = E  

vibration into chi vibration of x so that is your chi means I just said that E v equals to 1 / 2 + 

v h nu e this also = 1 / 2 + v h bar omega e and here v is the vibrational quantum number and 

that goes from 0, 1, 2, 3 up to infinity. 

Now the solutions for this would be so you have what you have H vibration of chi v of x = E 

v of chi v of x and your chi v of x will be sum normal (()) (16:13) N of v exponential – alpha 

x square / 2 H v alpha to the power of 1 / 2 x. This is the form of the solution. Now where this 

one is the normalization constant and this is your Gaussian function and this is the Hermite 

polynomial. 

Now one thing that I have written is your alpha which I have not written = mu omega / h bar. 

Alpha is some kind of a weighted coordinate so because you are multiplying with x so it is 



kind of a weighting of the coordinate. So this is actually is called mass weighting or mass 

weighing. 
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So one can always write or generally in the textbook it is written that alpha to the power of 1 / 

2 x = y if I make that transformation then what happens your chi v will now become function 

of y. By the way x and y are not different functions like orthogonal variables like what we 

have  used  in  Cartesian  coordinate  axis  y  is  just  a  transformation  of  x.  Chi  of  y  =  N v 

exponential y square / 2 exponential y square / 2 H v of y. 

So just trying to become more easier to represent or write and I told you this is nothing but  

your normalization constant and this is nothing, but your Gaussian function and this is the 

Hermite  polynomial.  When  you  solve  it  turns  out  that  the  Hermite  polynomials  have  a 

dependencies that means that is generating function.
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The recursion solution should be H v + 1 of y = 2 y H v of y – 2 mu so let me rewrite H v + 1 

of y = 2 y H v of y + 2 v H v – 1 of y and I can get the generating functions so what I get is H  

0 of y = 1 H 1 of y = 2 y H 2 of y = 4 y square – 2 H 3 of y = 8 y cube – 12 y H 4 of y will  

give me 16 y to the to the power of 4 – 48 y square + 12 H 5 of y = 32 y to the power of 5 –  

160 y cube + 120 y. 

Now you can see H 0 of y is only 1 H y of y is 2 y so when y = 0 it will go to 0 so this will 

have 1 node this will have 2 nodes because it is a quadratic equation this will have 3 nodes  

because it is a cubic (()) (21:27), it will have 4 nodes it is a (()) (21:29) and this will have 5 

nodes. So when I draw but all of them are the Hermite polynomials which are riding over 

your Gaussian function. So, when I draw them so v = 0 I will get a Gaussian function. 

Now for v = 1 so one can imagine so this is y = 0 or equilibrium so we will get this function 

and the third case we will get so if we look at the functions they will look at particle in a box 

function.  So they can always be represented like this  something like that. They look like 

particle in a box function, but particle in box functions are sinusoidal functions here there are 

Gaussian functions that are modulated by the Hermite polynomials. 

So this is v = 0, v = 1, v = 2. So you can always see that the functions become odd and even 

as the quantum number. So this v = 0 is a even function v = 1 will be odd function v = will be 

even function and so on. So for the even quantum numbers the function is a even function 

and for odd quantum number it is a odd function. So if I look back my H not H but chi of y or 



v = sum constant v that is normalization constant exponential – y square / 2 I am not sure oh 

this should have been a negative sign here. 

I am sorry about that so there should have been a negative sign here okay there is negative 

sign already there so I just missed so – y square / 2 H v. 
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Now one thing that I want to tell you is very simply is that when you have the Hermite 

wavefunction chi of v now I am writing in terms of y this is nothing but some normalization 

constant N of v exponential – y square / 2 H v of y, but we said y is nothing but alpha to the 

power of 1 / 2 into x where alpha is equal to what was the value of alpha mu omega / h bar  

yeah that is what it is alpha is this. 

Now mu is the if you have A and B masses mu is a constant omega is also constant because 

omega is nothing is related to omega is related to square root of k and k is related to the 

potential so this also is a constant h bar is a constant. So alpha is a constant so alpha to the 

power of 1 / 2 will also be a constant that means when you have y to the power of alpha x the 

behavior of y or the shape of the function of y will be variable y will be same as the variable 

x. 

So H v of x transform to H v of y will have a same shape except that the y will get multiplied  

by so that means the depending on the value of alpha the scale will either elongate or shrink. 

If alpha is greater than 1 then the scale will expand and alpha if so this will lead of expansion 



of the scale and alpha is less than 1 this will be instead of expansion the scale will shrink, but 

it will not change the way the function will look like.

The shape of the function will remain constant. So you have the functions of Eigen value of a 

harmonic oscillators as Gaussian functions multiplied by the Hermite polynomials and will 

look like oscillator is a representation of vibrational wavefunction which we will continue in 

the next lecture. Thank you. 


