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Hello,  welcome  to  the  lecture  number  30  of  the  course  quantum mechanics  and  molecular 

spectroscopy.  In  the  previous  lecture  we  were  looking  at  the  rotational  transitions  and  the 

associated selection rules.
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So we had, E rotation or E rotor was given by h B e J into J + 1 and when we had this is without  

Centrifugal Distortion and when we had Centrifugal distortion E rotational was given by h B e J 

into J + 1 - h D e J square into J + 1 whole square, so when we figured out that this is with 

Centrifugal  Distortion.  Now, we figured out  that  when there is  no centrifugal  distortion,  the 

rotational lines will be evenly spaced.

So this is going from J is equal to 0 to 1, 1 to 2, 2 to 3, and 3 to 4 this will be 2h B e, 4h B e, 6h 

B e, 8h B e and the difference is given by 2h B e, so we will have equally spaced lines 2h B e 

and we know that h B e is equal to h bar square by 2 mu  R e square. So from B e is proportional  

to 1 over R e square, so one can get the where R e is the A and B, and R e is the equilibrium  



distance or equilibrium geometry. So by measuring the rotational spectrum one can get the bond 

distance or in general for polyatomical molecule, you can get geometrical parameters.

Now it turns out that rotation spectroscopy is the only spectroscopic method by which one can 

measure  geometrical  parameters  or  bond lengths  in  particle,  there  is  no  other  spectroscopic 

technique that will allow this. Now what happens when you have the centrifugal distortion when 

the  centrifugal  distortion  is  there,  so  it  kind  of  effects,  because  this  term  effects  larger  J 

transitions more than the lower J. So what happens is this lines become more and more packed.

So the distance or the energy difference between the subsequent lines keeps decreasing. So this is 

delta E 0 1, delta E 1 2 and this is delta E 2 3. So delta E 0 1 will be greater than delta E 1 2, will  

be greater than, delta E 2 3, of course you know by looking at the pattern one can also figure out 

the centrifugal distortion and which is generally, so D e is approximately equal to 10 power -4 

times B e.
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Now when we go back to the molecular Hamiltonian, it had many terms so H was equal to sum 

over alpha h bar square by 2M alpha del square alpha, negative of this minus sum over i h bar 

square by 2me Del square i - 1 by 4 pi epsilon 0 sigma over alpha and sigma over i, z alpha e  

square by R alpha i + 1 by 4 pi epsilon 0 sigma over i, sigma over j greater than i, e square by r i  



j + 1 by 4 pi epsilon 0 sum over alpha, sum over beta greater than alpha, z alpha, z beta e square 

by R alpha beta.

Now this term corresponds to where alpha is the index of nuclei and i is index of electrons. Now 

we know that this is nothing but kinetic energy of nuclei, this one is kinetic energy of electrons 

and this is P E of electron and nucleus, this is P E of electron and electron, this is nothing but P E 

of  nucleus  and nucleus.  This whole Hamiltonian  is  written as H is  equal  to  H nuclear  + H 

electron, so this will be nothing but K E of nucleus, this will correspond to H nucleus.

And all  the  rest  of  the  terms  Kinetic  energy of  the  electrons,  potential  energy between the 

electrons between the nuclei and the electrons in the nuclei will constitute to the H electron. So 

this one will be only with this term and this will be 1, 2, 3, 4 terms.
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Now one can think of that is within the Born oppenheimer approximation, so one can think of it  

so your total Hamiltonian edge is H nuclear + H electronic, now if you solve this so one can 

think of this as H is equal to H nuclear plus, when you solve this will give some energy that is 

waterless  as  oil  qualitative  as  a  U  electronic  energy  of  the  electronic  part  of  the  total 

Hamiltonian. Now can think of the total Hamiltonian will be nothing but the nuclear Hamilton, 

here is only the kinetic energy of the nuclear.



Now one of the things that we have to see that U electronic has also nucleus in it two ways, one 

is the PE of electron and nucleus, the second one is PE of nucleus and nucleus. This U electron 

will constitute a potential  in which the nuclei  will move, so this is nothing but the potential  

energy for the nucleus to move or nuclei to move. So this is the potential, so think of it the total 

H Hamiltonian is like kinetic energy operator plus the potential energy operator which I will call 

it as V electron or U electron.

So this is the K E and this is the P E, so the electronic part of the Hamiltonian gives you the  

potential in which the nuclei will move.

(Refer Slide Time: 11:14)

As I told you the kinetic energy part or the H nuclei will be nothing but for a diatomic molecule 

A B will be nothing but minus h bar square by 2 M A Del square A - h bar square by 2 M B del  

square B. So this we said that we could do in terms of center of mass separation when you do 

center of mass transformation, what will get is - h bar square by 2 M, total mass del square center 

of mass - h bar square by 2 mu del square internal.

Where captain M is given by m A + m B and mu is given by m A m B divided by m A + m B, so 

this is nothing but total mass and this is nothing but reduced mass. Now, this is motion of center 

of mass, which is nothing but the motion of entire molecule. Now think of it like this, if there is a 



hydrogen atom has internal structure of several orbitals 1 S2, 2 S2 but thus are independent of 

the hydrogen atom is going to be moving or is to be stationary.

So this particular quantity will not affect or will not govern the internal structure of the molecule, 

and basically it is a free particle Hamiltonian. Now what we are left with only this, so what I  

have is H internal is equal to - h bar square by 2 mu del square internal and this is exactly what  

we had? When we had the rotational motion however, when we are considering the vibrational 

motion this will be also added up with the U electronic.

Because for nuclei to vibrate you know, a potential energy for them should be provided by the 

electrons, so the electrons provide the potential energy electrons in the sense very loosely the 

electronic  energy which  will  also consist  of  the  electron  nuclear  attraction  and the  nuclear-

nuclear attraction. So, this is your H internal.
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So we have the Hamiltonian, so for the vibrational problem your Hamiltonian H is nothing but - 

h bar square by 2 mu del square internal plus, let us call it V electronic, and how do you get V 

electronic? V electronic is nothing but H electronics psi electronics will give you V Electronic 

and psi electronic. So that is the potential, so this is the kinetic energy operator and this is the 

potential energy, so we have to somehow solve this Hamiltonian.



So H is  equal  to  -  h  bar  square by 2 mu del  square  internal  +  V electronic,  so this  is  the 

Hamiltonian so the corresponding Schrodinger equation would be that what we need to solve. 

Now if I want to plot, the function of R the V electronic that will come out to be something like 

this, so we all know so this is nothing but your R e or equilibrium geometry and in the rigid rotor 

case,  we looked at  this R e as the fixed distance between A and B, but that is not the case  

because the molecule A B will move in this potential, or vibrate in this potential, so what we 

have that is a curve something looks like this.
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So we have a potential energy curve that looks like this, so this is my potential energy and this is 

my distance and this distance is R e. Now when you have that one can approximate this as a 

harmonic potential in that case the harmonic potential will look something like that bottom of the 

well,  one can approximate the real potential  or the potential  in a molecule of A and B as a 

harmonic potential, so this is your real potential and this one is the harmonic potential.

Now, how do I get to this harmonic potential? Imagine there is a potential energy V and at the 

bottom of the well around R e, I want to expanded it as a Taylor series, So my V is now given as  

some value V0 + d by dR of V evaluated R e R + one half of d square V by dR square evaluated 

R e, r square + 1 over 3 factorial d square V by negative sign cube, dR cube at R e, R cube +  

etcetera. So one can write an expansion.



Now, what is V 0? V 0 is the bottom of the potential, this is V 0 now this two things that we can  

think energy is always measure relatively,  So I can always measure energy can be measured 

relative to V0. So if I measure energy can be measure relative to V 0, then my V this term kind 

of ignored, can be ignored. Now what you have is the, now since we are located the bottom of 

the potential  bottom of the potential  when you know at the bottom of the potential  the first 

derivative is 0, So dV by dR this is equal to 0, so at the bottom of the potential d V by d R = 0. 

So I can somehow ignore the two terms.
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So what I am left with is Potential V is equal to, first term is V 0 I told you that we can measure 

it respect to V 0 so we ignore it and the second term is dV by dR and since we are at the bottom 

of the potential we will ignore the term because the first derivative will go to 0 at the bottom of  

the potential. So what I have is half d square V by dR square at R e into R square - 1 over 3  

factorial d cube V by dR cube R e into R cube.

And if I want to include the next term it will be 1 over 4 factorial its d 4 V by dR 4 at R e, R to 

for a 4 etcetera. Now if I ignore higher order terms beyond the power of 2, so which means I will 

ignore these. Then what I have V is equal to half d square V by dR square, R e into R square,  

that is my potential V. Now, if I equate something called K is equal to d square V by dR square 

evaluated R e. So that is the second derivative of the potential with respect to R and this is the 



force constant, so which means your V is written as half K R square and that is called Harmonic 

potential.
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So therefore, your Hamiltonian H will now become - h bar square by 2 mu del square internal + 

V harmonic so, this is the Hamiltonian for the harmonic oscillation. So H will be - h bar square 

by 2 mu del square internal plus half K R square. Now if I have a, diatomic molecule A Band 

this is my direction, then what I am doing it? I doing this is my R e and this is the direction R, R 

is just a simply a choice is variable..

So I could in fact write it as my x e so one can write it as so this is my x e and this direction I can 

call  it  as x, because variables are dummy one can always interchange variable, so what will  

happen my H will now become minus h bar square by 2 mu, This is my direction. So when I  

have del square internal will become d square by dx square, where x is equal to x A - x B + half  

k x square. So, that is the Hamiltonian for which I need the solution. And that will give me the 

solutions of the harmonic oscillate.

But one must always remember that harmonic oscillator is an approximation, the actual molecule 

is not an harmonic oscillator. But harmonic oscillator potential something like this, so this is 

what I call it as a x e, it will never break, so harmonic oscillator potential does not break it all it 



can go up to infinity. This is your potential energy However, real molecules break, so when you 

go to some distance or some energy the A B bond will break, so then this is the real molecule.

So the harmonic oscillator approximation is only trying to represent the bottom of the potential. 

So if you go above, somewhat in energy then the harmonic oscillator approximation breaks down 

the other drastically. So when you are looking at the properties of a molecule at the bottom of the 

potential or when it is sitting in this well really the bottom of the well then one can approximate 

it to be a harmonic oscillate, even then it is only an approximation and it is not a real thing.

However  this  approximation  works  reasonably  well  for  most  of  the  molecules  and  this 

approximation can be used to evaluate the wave functions and the associated selection rules for 

vibration spectroscopy which will be continue in the next lecture and we will stop it here for 

now.


