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Hello, welcome to lecture number 17 of quantum mechanics and molecular spectroscopy. In the 

previous class we were looking at the transition probability and we arrived at the equation 
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P f of t equals to E0 square by 4 h bar square omega fi by omega square integral 0 to t prime sine 

square delta omega by 2 into t divided by delta omega by 2 whole square, integral f epsilon dot 

mu i whole square. And this I told you is the transition moment integral TMI and this is the 

modulating function. Now when you plot this modulating function as a function of delta omega, 

where delta omega is nothing but omega f - omega i and h bar delta omega is equal to E f - E i, in 

that scenario this will look like this, something like that.  

 

This is the function sine square delta omega by 2 divided by delta omega by 2 square, now if this 

function looks like this, means the maximum absorption will happen delta omega by l is equal to 

0 that is what at the resonance condition. But you should always see there will be very tiny 

absorptions even in the wings, and that wings are governed by this, where in the wings it will get 

absorbed will govern by this equation and will depend exactly on delta omega.  
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Continuing with the present lecture, now let us go back and look at this equation little bit more 

carefully, where P f of t is equal to E0 square by 4 h bar square omega i f by omega square sine 

square delta omega t by 2 by delta omega by 2 square f epsilon dot mu i whole square. I made a 

small mistake in the last slide, this integral does not exist because sin square came over only it 

was like a standard integral, now this is what we get.  

 

This is the probability of transition from an initial state i to a final state f, of course as you look at 

this is a t dependent. That means as long as the perturbation is there, the transition will take 

place, so longer the perturbation longer will be the transition probability because that time comes 

here, so you see the perturbation can actually be prolonged and you can increase the transition 

probability. Now there is one issue that we will look at in this lecture is the; what if state f is not 

isolated?  

 

So in this case what is happening? You are going from initial state i which is precisely defined to 

a final state f which is precisely defined, so we know that H0 i is equal to E i i and H0 f is equal 

to E f f. But this is when f is separated out, that means f is a clean state that does not have 

anything in its vicinity, but that may not be possible all the time. So what if f lies in the midst of 

some states?  

 



Let us look at the possibility that there is an initial state i which is a ground state which is well 

separated but there is a final state 'f' which is in between many many such states. A state f is 

embedded in a density, it is not a cleanly separated state but state f is embedded and where you 

can think of hydrogen atom.  
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Now hydrogen atom, let us say E n for H atom is given by let us say, E 1 by n square, just 

proportional to square of the principal quantum number and E 1 is the principal quantum number 

1 state. This is generally equal to if energy is -13.6 eV divided by n square. Now if you go and 

look at that state and look at large values of n, let us say the value of n is equal to 500, n is equal 

to 501, n is equal to 502.  

 

If you go to such states, E 500 is equal to -13.6 divided by 500 square in eV, E 501 is equal to 

minus 13.6 divided by 501 square into eV and E 502 is equal to -13.6 by 502 square in eV. If we 

plot these energies, they will be very close to each other, in fact the difference will be less than 

milli electron volts, in fact it will be micro electron volts. So, essentially the energy levels 500, 

501 and 502 are lying on top of each other, so such will be the scenario.  

 

And the other thing is what happens to the wave function? Now let us look at, I will give an 

example very simply as a particle in a box. Now the particle in a box wave function will look 

like this, for n is equal to 1 it looks like this, n is equal to 2 it will look like this. Now going to 



very high values of n is equal to let us say 20 and 21, so for 20 it will have 19 nodes, I do not 

know many nodes are there and for 21 there will be just one extra.  

 

What happens is that the wave function does not really change much between n is equal to 20 

and n is equal to 21. So when you go very high in energy where the energy levels are densely 

packed, the wave function changes are also very small. So in this case let us say if I have any n, 

let us redefine that n is equal to 499, n is equal to 500, n is equal to 501, if you take three states 

one can describe the state by wave function on the average by average wave function will look 

like psi 500 approximately.  

 

It will not change too much with respect to 500, if you go down by 1 to 499 or 1 up by 501 and 

energy also will remain more or less constant. In such a scenario, if there are a lot of states.  
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Now what I want to get is the transition probability P of t of a state f but not really of a state f, 

but states around f, total probability will be nothing but integral over f, P f of t density of states E 

dE. What is this density of state? That means, for a unit energy how many energy levels are 

packed? That is the rho E, so rho E is nothing but density of states, density of state simply means 

number of energy levels in unit energy.  

 



Unit energy is kind of you can define one joule or one calorie or one kilojoule or one kilocalorie 

or centimeter inverse or eV or milli eV, it is up to you what will be the interval that you want to 

define. If I use that then my P of t will be equal to E0 square by 4 h bar square omega f i by 

omega whole square integral f, rho E of f, sine square delta omega by 2 to t by delta omega by 2 

whole square rho f of E dE, that is my density of states.  

 

If I define for very narrow range, change in wave function is minimal and can be ignored, in that 

case then your f epsilon dot mu i, so what I am saying is that this f, even though I am looking at 

transitions to many of these states, I will take an average value and that change is not going to be 

very much different, there is a modulus square here. I am going to slightly rewrite this. This P of 

t is equal to E naught square by 4 h bar square omega f i by omega square modulus of f epsilon 

dot mu i whole square integral over f sine square delta omega by 2 t by delta omega by 2 whole 

square rho f of E dE. 

 

So that is the integral I need to evaluate and this I told you is a constant because the wave 

function f in average sense is already defined. When you have that so let us slightly look at delta 

omega, now what is delta omega? 
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Delta omega is nothing but omega f i minus omega, this is nothing but E by h bar minus omega, 

where E is equal to h bar omega f i, so this E is the energy states that we have. This is your i that 



is E i but this is like E, the states around which you are looking at the energy. Now if I define x 

as half of E by h bar minus omega into t, then your dE will be nothing but two h bar by t into dx. 

My initial equation was, I am just choosing something called variable transformation I am just 

trying to change from dE or E to x and I define x in terms of E.  

 

What we had is P of t is equal to E0 square by 4 h bar square omega f i by omega whole square 

modulus of f epsilon dot mu i whole square integral sine delta omega by 2 sine square into t by 

delta omega by 2 whole square rho f of E dE. After this transformation I can write P of t is equal 

to E0 square by 2 h bar omega f i by omega whole square integral f epsilon dot mu i square into t 

rho f of E integral - infinity to + infinity sine square x by x square dx.  

 

Now there is one thing that I want to do is the range, here I have defined over some range f, but 

here I have defined over - infinity to + infinity, so there is a change in the integration limit. This 

change in the integration limit comes because you have redefined your range in E, so essentially 

I will tell you what it means. It means that if you have some energy that around E you are 

looking at, so essentially you are looking at this small range defined by some average wave 

function f.  

 

But if you move away from this or above this, the average wave function is no longer the same, 

so your wave function has changed. The wave functions corresponding to the energy have 

changed, this integral will not matter anymore, therefore you can extend the range from minus 

infinity to plus infinity because it is similar to extension of adding 0s, because the wave 

functions are going to be different.  

 

Because of this energy range and you are fixing your energy to a small energy range, this 

integration can be extended to minus infinity. Now it turns out that integral minus infinity to plus 

infinity sine square x by x square dx is nothing but pi.  
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If I do that then P of t will be equal to pi E0 square by 2 h bar omega f i by omega square integral 

f epsilon dot mu i square rho E at f into t, so that is my final equation. If I define something 

called Wf i, this is nothing but the rate of absorption, that is nothing but this has probability by 

time, so that is nothing but P of t by t, that is nothing but pi epsilon0 by 2 h r omega f i by omega 

square modulus epsilon naught i square root.  

 

Now I can define some quantity such as Wf i equals to 2 pi h bar modulus of mu square into rho 

of f, where now you can look at this equation and then decide modulus of mu square is equal to 

E0 square by 4 h bar square f epsilon dot mu i square omega phi by omega square. There are two 

values, this is called the dipole transition, by the way this is TMI, that is transition moment 

integral, so this is called transition dipole and transition dipole is defined like this and Wf i, that 

rate for absorption will depend on these values. 

 

For a given f, this is a constant and omega fi is constant and if you know what wavelength of 

light you are shining, this is constant. So all these are constants, everything that inside is a 

constant, which means for a given transition mu square is a constant and you know Wf i, that is 

rate, 2 pi h bar also is a constant, mu square is constant. So 2 pi h bar is some constant K into rho 

f of E, which means your rate W f i is given by rho f E, which means that from initial state i to a 

density of states around f, this rate of transition will depend on the density of states.  



So the rate of transition phi is proportional to density of states around f and this is called Fermi's 

golden rule.  
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So essentially the transition between a state i to a densely packed states around f, this rate of 

transition Wf i is equal to pi E0 square by 2 h bar omega f i by omega square f epsilon dot mu i 

modulus square into rho f. This can be written as Wf i is equal to 2 pi h bar modulus of mu 

square rho f of E and modulus of mu square is equal to E0 square by 4 h bar square omega f i by 

omega square modulus of f epsilon dot mu i square.  

 

So this is the transition dipole which of course for given transition is constant, you can think of it 

like this your rate constant Wf i is proportional to modulus of mu square and Wf i is proportional 

to rho f of E. The rate for the transition between i and the dense states f is given by the transition 

dipole and density of state and these constitute Fermi's Golden Rule. I will stop here and 

continue in the next lecture thank you. 


