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From Postulates to Formulation 
 

In the very first lecture, I talked about why we need to do Statistical Mechanics. It is a difficult 

subject, very difficult subject and in the evolution of Statistical Mechanics, physicists and 

chemists, almost, you know, they were hand in hand. Many-many things were done together. 

Willard Gibbs (he was one of the fathers of Statistical Mechanics), many times, was considered 

to be a chemist. When I was doing PhD, he was referred to as an American chemist. Now I think 

physicists claim him as much as chemists. 
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So in the very first lecture, we did the preliminaries. We talked about if you take an 

undergraduate physical chemistry or even MSc level physical chemistry book what you will find 

is that the chapters except for the wave mechanics (quantum mechanics), 1 or 2 chapters on 

spectroscopy if there are 32 chapters you will find 20-25 chapters are things like kinetic theory of 

gases, thermodynamics (entire 3-4 chapters of thermodynamics), then you have a phase 

equilibrium, then you have a phase transition, then you have a binary mixture, you have solution, 

electrochemistry.  All these chapters that you study, they are all. 



You remember,  when you study of the conductivity the ions such as lithium, sodium, potassium 

etc., then conductivity- times- viscosity (
0   ) is plotted against the size; they are supposed to 

go as one over the size of the ion (1/ ionr ). (Here the size of the ions refers to their 

crystallographic radius). But it just goes instead of going like a straight line, it just goes the 

maximum and falls back.  If you remember, conductivity- times- viscosity is called Walden 

product and that non-monotonic behaviour is called the breakdown of the Walden product. The 

reason I am talking of the breakdown Walden product is that because I want to make a point and 

a very important point which is the following. 
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So, 
0  is the limiting ionic conductivity. In electrochemistry, you have read Debye-Huckel 

theory and the limiting ionic conductivity.  is the viscosity. 
0 is nothing but what is called the 

diffusion. And diffusion is inversely proportional to viscosity. So this product  (
0   )  should 

vary as 1/ ionr , which is like this (straight line). Instead of that what happens, it just comes down 

like that and this is lithium, then sodium, then potassium it goes like that and this is here where 

caesium, rubidium and all these guys lie. Maybe the potassium will be closer to caesium. 

 

So, in the undergraduate physical chemistry textbooks of Castellan or Moore or Glasstone or 

Atkins, they call this breakdown of Waldan product and give some pictorial description like ice-

berg formation around the small ions. So the basic idea of my telling this is that in much of 



physical chemistry, in undergraduate, whenever we have anything interesting going on, we have 

a picture that came but that picture was mostly very approximate. 

 

However behind all these pictures, there is a quantitative theory that was largely developed in the 

post 1950 and or maybe 1960, 70s and aided enormously by the computer simulations. 
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So, Statistical Mechanics has come of age now and like in quantum chemistry you have all the 

packages. So, a student working in a quantum chemistry laboratory can always have these 

packages and they use these packages, for example, doing organic chemistry calculations and 

other things. In Statistical Mechanics, those kinds of packages are just coming now in terms of 

GROMACS or AMBER or independent force fields. It has become much more institutional wise 

now. 

 

So there are a lot more calculations going on and it has pretty very important interesting things. It 

is a rapidly developing field; a huge amount of work is going on. It is not that much visible still 

in India, though there are now significant numbers of people doing Statistical Mechanics in 

chemistry and physics (the number of people is huge in physics). So this was the preliminaries. I 

explained, why you need to invoke Statistical Mechanics to understand what we call the “large-

scale phenomena”. 

 



Large-scale phenomena include many particles. Examples of large-scale phenomena are phase 

transitions, conductivity or understanding thermodynamics, or phase equilibrium, all these 

things. We discussed that in the first lecture. In the second lecture, we had a little bit of 

mathematics where we did probability and statistics. Because this name is Statistical Mechanics 

which combines mechanics.  

 

Mechanics is very deterministic, it starts with Newton’s equation. If the initial conditions are 

given to you, you can predict the future. But, as I told you, unfortunately, we cannot even solve 

what is called a ‘three-body problem’, that is even if you have three particles, we cannot solve 

that analytically. Even two-particles, having a little complicated potential such as radial potential 

or Lennard-Jones potential,l even that has to be done through a quadrature.  

 

So this is an interaction between A and B. rAB is the distance between A and B. This is the 

Lennard-Jones potential, we call it 6-12 potential. The form is 
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is a universal notation. Let me say A and B are the same, two particles both are A, then I do not 

need the B. I can do without this index (subscript AB). There is a separation between them that is 

r. and this is the form of potential. It is very important to understand these things i.e. the  

interaction potential between two particles. 

 

When they come from a distance, they attract each other. But when they come too close, 

electrons overlap and there is a huge repulsion. This simple potential, apparently simple 

potential,  plays a very important role in the understanding of many phenomena such as 

solvation, phase transition and many things. However, coming back to the point, even these 

potential in a two-body, we have to do by quadrature and by the time I go to three-body potential 

(i.e. if I bring one more particle), I cannot solve Newton's equation anymore. 

 

However, when you think of the properties of water then you think of properties of water in a 

glass which are Avogadro number of molecules and they are strongly interacting and we cannot 

use Newton's equation anymore to solve them. If we want some really very complicated and 



sophisticated effect like polarization i.e. one molecule is polarizing another molecule then we 

have to do quantum mechanics that is even more difficult. 

 

So, we have faced a situation where we have to explain natural phenomena like why ice melts?  

And then why water at 100 degree centigrade becomes steam? When I put a solute in a solvent, 

why depression of freezing point and elevation of boiling point happens? These kinds of things if 

you want to understand, you cannot, do from the first principles. What do I mean by the first 

principles?  These are the terms we use again and again in Statistical Mechanics. We also use 

these in Quantum Mechanics. 

 

In Quantum mechanics, when you say the first principle, we think that we are starting from 

Schrodinger equation and interaction potential and going about it. Of course, they are looking at 

the electronic properties and there are approximations and there are answers. In Statistical 

Mechanics, while one can do Quantum Statistical Mechanics, right now let me focus on Classical 

Statistical Mechanics because of the large-scale phenomena like phase transition or as I am 

saying why steam bites you more than water at the same temperature, depression of freezing 

point when you add salt. That is what the principle of ice cream that you get, you can go to 

minus 20 degree centigrade that is where ice cream falls. You can do that experiment by doing 

that. There is an ice cream maker and there is liquid there which then goes very low temperature 

and you put milk and you can make the ice cream.  

 

So these many large-amplitude phenomena that you want to understand, we cannot do by 

following Newton’s equation anymore. So then we need to go further but how do we go. 

Classical Mechanics means Newton’s equation or Hamilton's equation or whatever. Let us 

continue with Newton's equations which you know. Newton's equation then is not going to help 

us because we cannot even solve a three-body problem.  

 

That is where Statistical Mechanics comes in.  It was formulated starting with Maxwell-

Boltzmann, then Willard Gibbs. So, what is then I do? I cannot do mechanics as I know it. So I 

had to drag the other. This was a huge conceptual and philosophical problem at the end of 19th 



century when people started introducing the concepts of statistics. It all started with the work of 

Maxwell. You all know the Maxwell velocity distribution. 

 

Maxwell is the first guy who told if I have, in a glass jar, a bunch of atoms or molecules at a 

temperature T, I do not need to follow properties of each atom and molecule. Instead, I can talk 

in terms of distribution. So Maxwell said, Boltzmann also said what are the properties we want 

to know? I want to know the viscosity of the gas and later viscosity of the liquid. 

 

I need to know the pressure, equation of state. You know PV = nRT is the ideal gas law but if 

you go to a little high-density ideal gas law breaks down and then comes the Virial equation. 

How do then I get the Virial coefficients?  So, then Maxwell said,  I do not need to know 

individual atoms and molecules in a striking departure from classical mechanics, instead I will 

talk of a probability distribution. 

 

As soon as the concept of probability distribution came in, then came the question of statistics. 

How do I define probability? I need statistics to define probability. So that is what it was the 

second lecture where we discussed probability and statistics. Then in the last lecture, the third 

lecture, we started talking the postulates. So fundamental concepts and postulates, I will revise a 

little bit of that but then I will not go to Liouville theorem in this lecture. I will do it later. 

 

I will directly go to something which has little bit more applications: ensembles and partition 

functions. These are from my book and what I have written there that, actually earlier I have this, 

from postulates to formulation. So we will go to the formulation of Statistical Mechanics. Today 

so it is a very important class in that sense, this and the next class. What I had before the title is 

that from promises to realization. 

 

Because there was this promise that was made by Boltzmann and Willard Gibbs.  Willard Gibbs 

mostly realized it. So, both Boltzmann and Willard Gibbs played a role in giving us the main 

postulates of Statistical Mechanics. From there will directly go now because this is more to do 

with dynamics and we will do that at some stage but not now. There are two postulates which are 



connected by the one hypothesis and based on that Statistical Mechanics promises to explain the 

natural phenomenon which is very high. 
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So, there are postulates that I did last time also but this is so important so that there is no harm in 

doing it once more. So the first postulate is called time-average is equal to ensemble average. 

And the second postulate is called equally a priori probability. What is not told in a not any book 

is that why do we need the hypothesis?  These two postulates are connected by Ergodic 

hypothesis. I will spend next 5 minutes talking about it then we will go to the partition function 

and ensembles. 

 

How did that come? It came because Boltzmann tried very-very hard to develop a kinetic theory 

of gases. So, when you read, as I mentioned this last time, in Quantum Mechanics if you noticed, 

I did not notice, but I realized later partly because of a book I picked up, of the Ryogo-Kubo in 

Presidency College, the old books next to presidency college that when you study quantum 

mechanics since all the way from hydrogen molecule, you do not have any name. 

 

You know there is no name because particle in a box, rigid rotator, harmonic oscillator, hydrogen 

atom, hydrogen molecule that because everything was done by Schrodinger alone. You know 

when he first hit upon the idea he went to a resort area and stayed 3 months there and solved 



everything. So the whole quantum mechanics as we read in MSc, you know is that done by one 

man. 

 

Similarly kinetic theory of gases again, there is no name. Almost entire of the kinetic theory of 

gases was done by Maxwell and a bit here and there by Boltzmann later. So when this beautiful 

paper of Maxwell appear, there are other papers around that but not as clear as Maxwell and also 

not went to English-speaking world, then Boltzmann fell completely in love with that paper until 

the end of his life. He died early, in 1906. 

 

He carried that paper and then he tried to extend Maxwell's work. Maxwell had this funny mix of 

assumptions that particles are like billiard balls but then, on the other hand, he is also talking of 

an ideal gas, ideal gas do not interact they pass to each other. So, there were these contradictions 

in all the ideal gas, in our study of kinetic theory of gases. So Boltzmann set out to extend it to 

real gases and separate and there is a famous equation i.e. Boltzmann kinetic equation. 

 

But Boltzmann did not fully succeed, he tried very hard. He could go only to very dilute gas and 

he also made some assumptions, which were heavily criticized to the extent that probably caused 

his death. Now, when Boltzmann tried very hard and could not take into account even, he is the 

first one. Maxwell had it, the concept of probability distribution but he did not explicitly state 

that in his formation and that was done by Boltzmann. 

 

He explicitly added probabilistic concepts. He said, if I have a probability of a particle at a 

position r with momentum p, I call it f(r,p,t). Another particle at position r1, p1 there r2, p2 then 

together I have a two-particle distribution like I call up f2 (r1, p1, r2, p2, t) that at a given time, a 

particle as r1 and p1 another particle as r2, p2 i.e. a two-particle distribution. It is so difficult 

because it has r1 and r2 all of 3 dimensions i.e 3+3= 6; and p1 and p2 have another 3+3 = 6. What 

a beast it is!  So, he made an approximation that f2 (r1, p1, r2, p2, t) = f1(r1,p1,t) f1(r2,p2,t).This was 

called random chaos approximation and he was immediately and hugely criticized for making 

this approximation. But there was no other option.  Subsequent whole century people have tried, 

100 years people have tried to extend that and have done to some extent. So when Boltzmann 

tried these, he could extend all little. 



 

On the other side of Atlantic, one person who looked with concerned at the difficulty faced by 

Boltzmann, who was equal fan of Maxwell and Maxwell distribution, his name is Willard Gibbs. 

Willard Gibbs then thought what Boltzmann did is not tenable anymore, we cannot go that way 

because we cannot do two-particle. Three particles are out of the question and there are also 

many other complexities. 

 

So then Willard Gibbs made the important observation that, as I told in the last class also, let me 

have 10 glasses, 10 glasses of water half full,  now I look into it. By that time the microscopic 

motions and all these things, kinetic theory of gases were somewhat already understood. So if I 

think of the microscopic state and a microscopic state now is defined by giving the position and 

momentum of each particle. 
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So I have N particles then I give you r1, r2.... rN, I give you p1, p2,... pN that together determines 

my macroscopic state of the system. Now in my 10 glasses, all these have water, now all of them 

have the same properties, they are at the same temperature, they have the same volume, they 

have the same pressure, they have the same specific heat, they have the same conductivity, same 

entropy, every property is the same. 

 



But certainly, the microscopic state of all of them would be different because there is such a huge 

number of microscopic states. Atoms and molecules are moving around. So, then Willard Gibbs 

realized that if I can now have a mental replica; I have just one, this is my system in course this 

is my real system. Now I mentally construct billions and billions of my mental objects such that 

they are thermodynamically same but their microscopic states are different. 

 

This mental construction is called an ensemble. Then he said if I wait for a long time then my 

this system, my system in question going to go through all the microscopic states, so these are 

essentially same microscopic states in which all these particles are. If I now in my mental replica 

I create a mental, billions and billions of copies of these things which I call ensemble, the 

collection is called ensemble. 

 

If I can take an average of that then that would be same if I now study what Boltzmann tried to 

do, study the detailed trajectories; trajectory means the path that the particle takes, all the 

particles take together, that will be the same. That if I can do the time averaging over infinite 

time as Boltzmann tried and if it can be placed by the ensemble averaging, averaging over all this 

mental replicas, both will be the same.  

 

So that was the first postulate of Statistical Mechanics i.e. time average equal to ensemble 

average. Now as soon as Gibbs did that, there is a problem, a problem came that when I am 

doing time averaging, I have one system which I am studying for a very long time and I am 

studying the motion of atoms and molecules their positions and momenta; and then I am 

averaging a property for example pressure, I am averaging a property, for example, the internal 

energy, their enthalpy, entropy but now I have a replaced it by my mental construction. But what 

is the guarantee that the system I am following for infinite time will go to all the microscopic 

states? And second, even if they go to all the microscopic states how do I give a probability to it? 

 

So that is the time, he introduced that I am going to talk of the systems with a constant number 

N, constant volume V and constant energy E. So all my mental replicas have a constant energy 

E. So all the microscopic states have the same energy. If all the microscope states have the same 



energy E, then I can now assume (and I have no other option but to assume under this ensemble) 

that there is equally a priori probability i,e. all the microscopic states are equally probable. 

 

There is no other option than to do that. It turned out, it is correct. It worked out but that means 

all the subsequent work said that is okay. All the microscopic states with equal energy are 

equally probable. People still work on this. So these are the two postulate. The first postulate 

introduced the ensemble, one of the most brilliant ideas that mankind has ever come up with. 

This probably does not get the sufficient credit that how brilliant this construction is! Then time 

average is equal to ensemble average. 

 

But as soon as this was made, here to average over all the microscopic states and he needed the 

probability of being in a microscopic state. But since they are all the same energy, the natural 

postulate was that they are all are equally probable that is equal to a priori probability. But there 

are no other options and it turned out to be. Now came what as in between started talking about 

that now, he faced the problem, following problem.  

 

I have done time average, I have done some ensemble average and I have set equal probability, 

in ensemble average, I am going to billions and billions of microscopic states. But what is the 

guarantee that when I do a time-averaging, the system goes through all the microscopic states in 

a given time, what is that guarantee? Then comes the constrain, the hypothesis which is Ergodic 

hypothesis which means the system indeed given sufficient amount of time, it visits every 

microscopic state equal likely. 

 

So the first postulate requires the second postulate because to average over the ensemble and 

once this is set then I have to make sure that my system visits every state. So this is then they 

made the Ergodic hypothesis which connects these two postulates. So this is the very important 

point of the statistical mechanics and why it is important because armed with these two 

postulates and hypothesis, that is where everything whole of statistical mechanics is built on. It is 

very amazing.  

 



This is what you can say equivalent to the wave function. And the wave function has to have 

these properties, satisfying Schrodinger equation,  has to be positive and square-integrable. 

The similar kind of things that comes here in this statistical mechanical formulation. This is very- 

very important to understand. 

 

This part is more important to understand because now as I was talking you a while ago about 

the different packages, the time average is what we call now the molecular dynamics simulations 

and this is the ensemble average what is called Monte Carlo. So these are the two major branches 

of computer simulations that we do. And the same problem, emphasized by Gibbs, so many 

years ago, more than 100 years ago it is exactly the problem we face now. 

 

So when I do equilibrium statistical mechanics, equilibrium properties like a phase transition, I 

land up the problem by one phase to another phase that cannot be done in molecular dynamics 

simulation because it cannot explore all these things, it gets stuck in a minimum. We will talk 

about it. Now that is where you go to Monte Carlo, which is much better to calculate time-

independent equilibrium properties. 

 

Now Students are asking me today, why do we mix these two? The reason we mix the two is that 

many times molecular dynamics get stuck. So we follow a hybrid where you start with a 

multiple, not too many maybe 10 or 20 initial condition, then do molecular dynamics from that 

and then the probability of initial state given by the energy. So the hybrid simulation is a very 

popular thing now, to study really complex problems like in biology or like water at very low 

temperatures. There are a lot of interests now, you know at low temperature there is some 

presumably liquid-liquid transition.  
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So, now I will slightly talk if I have. Now this is the kind of thing that I want to point out. Say I 

have a particle which is undergoing some kind of motion. So this is a particle but I have a kind of 

energy landscape like this. In that case, the particle can get stuck here. This is a very simple 

thing, a one-dimensional walk, random walk, but in an ordinary random walk, drunkard’s 

random walk you have flat energy. What you have here is called rugged energy landscape. Such 

a simple problem, one-dimensional with energy distribution, it is just hell to get a molecular 

dynamics simulation going into this kind of a system because it becomes non-Ergodic very 

quickly. And so if you want to calculate equilibrium properties you do a Monte Carlo, you just 

sample. That is very easy to do. On the other hand, if you want to calculate dynamical properties, 

it becomes very- very difficult. 

 

So this is an example of what we call compromised Ergodicity. So the Ergodic hypothesis was 

particularly made to make sure these kinds of situations are not done. Now, why is it less 

serious? In many of the cases, in NVE, because all of them are the same energy, these will be 

ruled out if I can do this simulation in NVE because these kinds of things are not allowed. 

However, in the real systems, we do not do NVE, we do the other ensemble which I am now 

going to discuss. 


