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Now, I go to the most important quantity that important quantity is;  

(Refer Slide Time: 00:24) 

 



The two particle distribution function which is defined here, so now I want to know that what is 

the probability if I have one molecule here another molecule here in other words, I also want to 

know later in homogeneous system, how many molecules are there? I have been discussing. So, 

now I go by the following important definitions the radial distribution function is joint 

probability of having r1 and r2, one at r1 another r2 and that is divided by ρ2.  

 

Because, if this probability is independent of each other P(N) is independent of each other then    

PN(r1 ,r2) will be it is P2 then r1, r2 then I will have P1 r1, P1 r2 and that I just showed in a 

motion is the same so that becomes I just showed in homogenous system these is nothing but 

density so then P r1 r2 if there is no correlation, then it will be the Rho square so it makes sense 

now you define quantity where the joint void distribution which is P N r1 r2 is divided by ρ2 . 

 

Because in the limit in the original no correlation, and also in the limit when r1, r2 are widely 

separated then r1 and r2 widely separated In these notation r is r1- r2. So as you showed it, 

please make these corrections in a second addition, we will fix all these things. So the radial 

distribution function, now we have this g(r) is the radial distribution function again I motivated 

that it is in a it is number of molecules in a shell at a distance r. 

 

This gives g(r) and it is a very pivotal quantity in theory of liquids. Now, go back. So we showed 

this is rho r, now we want to do two-particle distribution just type motivated in there that then 

will be in the from; 
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N-particle distribution which is defined here 
!

( )!

N

N n
 of this quantity then I get two-particle P(2) 

r1, r2 a little bit. I am comfortable with both r1 and r2 because in at the end of the day, you 

know,in homogeneous liquid it is only the distance between them. It is both r1 r2 not needed it is 

I can select my coordinate of 1 and then I can only call consider r2 as a distance r. So basically it 

is a distance is scalar that becomes which is far simpler quantity. 

 

The r1, r2 if I keep it as a vector then it is 6 dimensional. But what really matters is 

homogeneous liquid is one dimension. So which the tremendous implementation and something 

people should be aware of. So just from the last one I get this thing I integrate over r3 r4 r5 that 

to rn, and then the configuration integral Mayer’s configuration integral. And 
!

( 2)!

N

N 
 , now that 

of course I can now divide. 

 

I can start seeing how ρ2 will come out I can then this quantity will be ρ2 N going to infinity these 

quantity will be ρ2 and then if they are not interacting then ZN is Vn and then this V2 will another 

V to the power N-2 will come here, so I take back these conditions that. So these are very clever 

limit by multiplying and divided by this square okay. So the motivation of g(r) is now clear 

motivation of g(r) is that is where is clear and so. 
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 but r1, r2 what we need actually is a |r1 – r2|. So, this is the 

radial distribution function, which is the probability of getting that, they are two particle 

separation r that is the central quantity of our discussion here, okay?  
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So now go generalized to n particle distribution many times we need three particle distribution 

g3. So from the discussions, I have done this is g N and then density then ρr. I give a this delta 

function is kind of a simple but straight forward thing that we now want to be talking of N-

particle, this is not quite correct r N equal to so I that means that n is missing these δ(r – ri). 



 

So they N-particles and this is a complete distribution of N particles, that means what is saying 

that is essentially  P(N) but the delta function representation, but the quantity is that I can go to g 

n and particle so they are what one is saying that I have N particles in a N particle system I have 

tagged small n particles and I want to know what is the probability of this in a huge system, there 

are many, many molecules which are not which are going to integrate over.  

 

But I have so the green last rate at the total N, so what my small n is 3 so I want this three 

particle positions and the r1, r2 and r3 and that what is the probability of having three particles 

are having r1, r2, and r3 when n=3, there I have that description and I define at as the three 

particles the probability distribution the normalized by ρ3 this is done for homogeneous system 

that I give otherwise. 

 

I will just make it
 ( )n n

N

n

P r


  that would be this quantity. As I said delta function means you can 

say okay I can write this thing now as  
3

1

i

i




 r r , so i have the position of this three, and that is 

then will be ρ(3)(r). So this is the definition of delta function represent that as an advantage we 

will see later.  

 

So homogeneous system this averaging that we are talking this comes out like that is not very 

important okay. 
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So now however in a two particle distribution it becomes kind of interesting because then I can 

now write your two particles r1 and r2, then I can write okay one particle at I have to sum over 

this is this in just constant particles there is same or not constant identical particles then I can say 

my ρ(r) at r1 and r2 is just integrate over all the other molecules n number of integration the     

r n. 
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But before all our definitions we are making this integration to N-2, but now because of delta 

function representation I can put it in and say, one particular r and another particle is r՛ actually if 

I have to look at that then that should be r1 and r՛ is r2, this becomes the then delta r1- r i delta r2 

- r j, I sum over all i and j and if I make them double sum then I have to take over counting I 

have avoid that I have to take half, which is half. 

 

This is a ρ(r1, r2) so if I can do that now, the number of ways I can pick it up is 
( 1)

2

N N 
  

verticals, then this is the same thing. As that we have done in the last page also and same thing 

again repeated here. So nothing new is repeated here. 

(Refer Slide Time: 09:58) 



 

So we have now developed a definition of g (r). So we define g(r) In terms of ( )U re  , so starting 

from n partition function. Starting from partition function we get this quantity and a definition of 

g(r)  we have not evaluated here yet, but we have structure, next what happens?  
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So now we take a little bit back and say okay what do know about gr? Before evaluate gr which 

is difficult but has been done with great accuracy in many large numbers of systems, but there is 

two ways one can get it directly one is radial one is the computer simulation and neutron 

scattering and also as I told you these days the x-rays in the random system so what we are doing 

is essentially a random system, so actually a random system and liquid one of them.  



 

But of course the what I am doing is also for glasses that goes for very much glasses and which 

is more materials, surface things like, you know mobiles this surface of the mobile great need for 

the structure of the liquid crystals, you must all those things exactly follows these terminology 

that is why the terminology though we are doing the context of liquids, these are terminology 

and the nomenclature that goes into perfect soul of physics and chemistry. 

 

So the radial distribution function RDF radial distribution same as g r, is RDF so how do they 

look? Now we have plotting here radial distribution function of say around this blue one, this is 

little bit silly drawing that because there are too much of a structure really do not known too 

much of a structure but what it regards this shown that this is the center one the red ones are the 

first layer and the blue ones are the second layer and I do one I should draw something more 

maybe okay.  

 

So now you see, near the first layer this one there is a very sharp peak almost reminds you of the 

crystal. Because liquid has a considerable amount of short range order all the liquids, water short 

range order it is of the kind of thing we discussed in Ising model same short range order, 

molecules are placed quite like a crystal in the first layer, so this is the radial distribution 

function structure there is a sharp first peak. 

 

But the first structure in the first layer is due to the extended volume interaction because the 

molecules are packed together they are touching the surface then comes the second layer because 

the the first layer is structured second layer is also structured, that structure is like you are 

packing people see in a bus like in places like Kolkata or Mumbai bus will be crowded. So if you 

are in a centre of a crowded bus then the people around you will be finite number. 

 

And there will be you will find 4 or 5 people around you then if it is a big bus then another 4, 5 

or 10, around the second layer, so the hard sphere interaction that you cannot penetrate two 

molecules cannot penetrate that it has a volume and size that dictates this arrangement. That is 

what I mean that is the hard sphere part of the interaction repulsive part of the interaction that 

determines the structure of liquid. 



 

This is very, very important the structure of a liquid is determined by these repulsive hard sphere 

interaction dynamics also it will get extended by that but phase transition and many properties is 

a competition to the repulsive part of the interaction and the attractive part of the interaction is to 

together drive the properties of a liquid and the so this is what now g r, if I now do this 

calculation like just it is exactly what Bernal did, he is genius. 

 

So if you do that then this is the Bernal kind of g(r) that we get, radial distribution function in 

your homogenous system of that gives you how many molecules are placed at what distance now 

the important thing to know the structure factor where you get the g r? 
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So how do you get g(r)? Experimentally, so long I have been talking of partition function. 

Experimentally does not care about your partition function, it can you want to measure and 

indeed we can directly measure this was shown first time and done on the first time Van Hove a 

great physicist around 1950, it is I think 47 to 50 around at that time after second world war 

when it comes scattering it comes.  

 

He could get the scattering cross section from liquid and that he will structure factor came and 

that from then these are the equations will briefly derive but will not go very detail into that that 



the structure factor is which is measured from neutral scattering cross section is exactly given by 

radial distribution function, so S(k) is essentially given by; 
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Certain pre factor, this is the equation work, it go like, so it is essentially Fourier transformation 

of so this is my g(r)  this is Fourier transform other factor like 4 π are here and so this is the one 

that I get from neutron scattering. So from differential cross section, we describe d by σ, this is 

this total scattering cross sectional differential, because what is the amount that goes into if 

incoming beam coming then gets as scattered then what goes into an angle located at σ? 

 

That is this cross section is connected to total number because exchange of momentum exchange 

of momentum is k is the difference of momentum between incoming and outgoing and that is 

because of the positions the length scale and that will show the derivation but this is as I told you 

which is what? Is equation we as a golden equation, so static structure factor is k by neutron 

scattering is gives you radial distribution function. I think upto to an extent that is the most 

important take home message of this lecture.  
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So, now this is now going to do now should that starting with the geometry that incident beam 

comes in gets scattered. So the ki is instead beam k 2 is this scatter is going to forward scattering 

then representation of neutron scattering. If we can do that; 
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Then plane wave becoming neutron is a plane wave around k i going out it is also a plane wave 

k2 then one can write the wave function last total wave function that is going out is linear 

combination of the two, but most important part is that 
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That is comes from Fermi golden rule. So scattering cross section, square of the interaction 

between them and once you do that. 
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This is the Fermi golden rule,  
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this is square of the interaction between so the particle coming and here is my sample the neutron 

interact with my molecules here and gets scattered off and that case is giving by this scattering 

here which is nothing but interaction of the neutron at a particles at position ri an incoming 



neutron and that is r- ri, sum of the rate of function the kind of thing we told before. So this one 

now can be transformed into by 
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Fairly simple, algebra and using the delta function representations one can show that the 

scattering cross section is connected to this k prime is written as ki, k2 – ki, that we just will do 

later. This is the structure factor and one can also show that the structure factor is k is same as 

rho k rho - k, 

( ) k kS  k  

 that is done in the book and that is the same as this quantity and for static structure factor which 

is measured by forget about this k by this. 

 

This is experimental quantity, this is the experiment and this relation is the theory and this S k is 

nothing but the radial distribution functions as we yeah this is the equation. So you know, S k 

from neutron scattering and then we can invert this Fourier transform again to get g r and S k is 

getting from neutral scattering by the following; fairly trivial manipulation that this is measure 

experimentally that directly gives S(k) once you know the parameter V. 
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Thus we are done now, it is known as the static structure factor and this gives the correlation and 

we just show that this gives us the g r most important quantity, not just in liquids but in glasses, 

in materials and everywhere else, that is what the huge number of people are measuring the 

neutron scattering, Okay? We are done.  

(Refer Slide Time: 20:46) 

 

So the thermodynamic, one can get the thermodynamic functions for radial function and we will 

continue that in the next class, little bit of this radial distribution functions and that is today I will 

stop and take up from here and then we will go tomorrow to, a very related thing which is theory 

of polymers. 


