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 Lecture - 48 

                                    Ising Model and Other Lattice Models Part 5 

Welcome back, so we will continue with the Mean Field theory of the Ising model and as I 

said repeatedly in the Mean Field theory you have the dimension enters to the coordination 

number gamma and with the by enlarge generally is a good approximation there is 

no problem with that, so the thing that we have already done is that the decomposition.  
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which is this construction of the table, these construction of this thing that you have already 

done the up-spins is the plus and whenever I draw a line from 1 up spins only from the up 

spins to all the nearest neighbours, so 2 up spins next to each other then there are 2 lines and 

that becomes 2 N++, and those kind of a things and for example, this is the  condition that we 

derived that γN+ = 2N++ + N+-, and these are the kind of relations that we just need at 

length.  

 

So you know these are the things again, so these the book from Kerson Huang at which is the 

best these from Kerson Huang and this is the best description of Ising model of the Kinetic 

Mean field theory of Bragg Williams approximation that I am talking here is done this, in 

this book of Statistical Mechanics. 
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So then, one important thing in this process going through that, so this was the kind of things 

that we have been discussing all this time that the writing down the Hamiltonian in terms of 

this what exactly I was telling before I do the mean field approximation, then this is the 

partition function this is fairly Universal notation we find everywhere in the world the same 

every book we would have this notation. 

 

So that is an equivalence that means this between devising more elemental theories are fairly 

well documented and we will articulate it. Because these are kind of, so important that we 

have to be more or less in addition; now I just told you that this before I go to the next step 

there is to show the importance of Ising model that, this is applied to so many different things 

one of them is the lattice gas.  

 

In the lattice gas you say okay, I will at lattice where I have if there is a gas molecule then 

there is if there, so I want in it gas where a lot of empty spaces and I want to model that by 

saying okay if there is a particle then there is a black and there is no particle that is empty. So 

that simple thing essentially is again N+ when there is a N+ goes over to your occupied, N- is 

gas particles but there is nothing there and the two next to each other is N+-, if 2 occupied 

next to the N++. So you can now map the Ising model into lattice gas and you can do 

wonderful stuff. 

(Refer Slide Time: 04:01) 



 

So then again that as we said here total number of lattice sites, then these total number of 

atoms are occupied so in this lattice, when they are occupied they are occupied that is N++ 

when they are empty that is N-, and total number of nearest neighbour pairs is N++. So 

exactly that thing, when you map that you can now get the and so if you say, when they are 

next to each other there is an attraction and that attraction is epsilon. 

 

Then that gives you that, so it is like two parallel spins a ferromagnetic interaction and then I 

can write the partition function I can write the partition function like that. And then, I can 

now get the exactly decompose into this, only difference is that the beta H term here is given 

by this term, but again I have to evaluate the same thing : 
( )

,( ) H N Ng N N e  
   that 

is this thing, so I have done. 

 

So one thing, number of ways of distributing atoms, N+ atoms into the N, N number of lattice 

sites, now something extremely important comes out of that then if my number of atoms 

occupied atoms my black dots or my here white dots, if that is equal to N+ then I know N+ 

and -N- gives me the magnetization and what does N+ gives me here? N+ gives me density, 

so then I immediately have a wonderful Isomorphism, which is goes a very long way that 

magnetization is equivalent to density. 

 

That exactly correct turned out to be, that is the way we can transform one equation state or 

magnetic system into equation state for the gas liquid system, it is a far-reaching 



consequence. So now we now just discussed that how lattice gas model can be mapped into 

Ising model, we may discuss one more interesting thing. 
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And that is, these are all from Kerson Haung, now the binary alloy is brass, β-brass, beta 

brass and that is zinc and copper, and then I am now occupied my lattice sites are occupied 

either by zinc atom, I can now consider disorder transition that takes place at 742 Kelvin in 

this case, that you can immediately see that my up spin could be copper, my down spins are 

zinc or other way around and I can again write down a Hamiltonian. 
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So sure enough I write down a Hamiltonian exactly same way, I now say okay, my copper- 

copper is energy interaction at the epsilon1, my copper and zinc - zinc, this is thing and if I 

want copper-zinc then like that, so this kind of binary mixture we have talking binary alloy 



that like, copper and copper like each other and zinc and zinc like each other low temperature 

of course here there is a more long-range interactions because of the metalicity and all those 

things. 

 

But at a level high temperature when you are talking order disorder transition those things but 

we have to say copper and copper like each other and zinc and zinc like each other very much 

like a binary mixture that we do and we will talk a little bit about that later. So now I exactly 

have the same conservation rules that mean I start with the 5 here these three numbers N11, 

N22 and N 12. 

 

And then I have the conditions just I have done before exactly same, that up spin-up spin now 

copper and copper down spin-down spin, zinc and zinc and copper and zinc and 12 and 

copper + zinc is total number of lattice sites N, and then I eliminate and I now get my energy 

our Hamiltonian, I get Hamiltonian in terms of their N++,N+-, I get in N1, N1 that means N1 

is number of lattice sites occupied by copper or zinc whatever.  

 

And N11, copper and copper are nearest neighbours, so these thing they are exactly same 

what I have reduce to exactly same that my Ising model. So now I showed two cases gas 

liquid transition and binary alloy which are completely isomorphic and that in one shot it 

explain beautiful many things, for example if I do binary mixture I give it just one example 

before I pass on against density then this is what gas liquid transition and this is the critical 

temperature TC. 

 

 Now, if I now do that with a mole fraction x of one species is exactly same graph, this is 

exactly same when I plot magnetization against temperature, because I already told you 

density is like magnetization. So in one shot in one formulation you are getting three very 

fastly different phenomena which is the magnetization, gas liquid transition and order-

disorder transition and phase separation in binary alloys. 

 

This is just amazing, that is why one takes the Ising model so seriously both in static 

equilibrium properties and this and our language of its transition is completely dependent on 

Ising model, this is the most important system in this statistical mechanics, okay? 
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Let us continue and these are saying this is the magnetic transition that is happening 

magnetization against temperature, this is same as I can instead of that I can plot it rho versus 

T and exactly same thing, so this is the classic critical point when a magnetic system, so 

order-disorder transition, mole fraction all these things are the same.  
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This is one of the most huge, huge successes of the Ising model.  
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So, now we go ahead and we complete our task of the mean field theory and that will be now 

little bit . 
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So the way we do now is this is order disorder transition. That done. I do not need to do that 

but what instead; I will do what I was continuing with, okay? 
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So now the mean field theory is same, the way I am the level I am doing is Bragg Williams 

approximation and this is thing and I need to make it little bit fatter now, so this is I 

introduced long range order parameter and short range order parameter L Sigma N+ 1 and we 

said the same thing and now.  
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I make the approximation that short range order parameter is given by long range order 

parameter. So the approximation is contained in the statement that there is no longer short 

range order apart from the long range order. That means approximation statement that, no 

short range order other than long range order, and once I do that I do this then I get, when I 

make 

2

2

N N

N N
  

  
 

 that translates into σ.  



 

Because this is nothing but it L remember the L+ you know  
1

1  
2

N
L

N

    when I use 

that into here I get see this condition. Let us see when I use this into that, then I get this 

condition  
21

1 1
2

L    , now that essentially means that I have the Hamiltonian now 

completely in Kerson Huang H is my B so my Hamiltonian is then one over N, what is 

energy one over H 
21

2

H
J L BL

N
   .  

 

So just making a note that; H is my B and this gamma by gamma but this epsilon is my  J. 

This notation I am using a little bit more model like we use J for Ising model not epsilon as 

Kerson Haung as used, and we do like to use Hamiltonian H but not E as I use Hamiltonian 

for H that deprives me of H for magnetic field so I used to B, but B equal to H nu. So this 

there is no room for any confusion here, once I do that then I right now I am in a completely 

free domain now. 

 

I know how to go I know the how many ways I can get N+ up spins in N and that of course is 

N factorial by N + factorial, N-N factorial, so that is I have written here and N+ is half N 1 + 

L the other is N 1 - L, so I can write N factorial by N + factorial, N - factorial then that is the 

whaler or in factorial 2 N+ so that is the way I have written here. That is I have written here 

this is the number of ways to distribute.  

 

And for a given configuration with L because I started with N + and N + + that was the exact 

then, I made the approximation mean field approximation and as a result of mean field 

approximation I have on the N+ then I go back I already have L and Sigma and when I 

eliminate N++, I eliminate Sigma, I have only L, but it has a consistent way in a consistent 

way so I have the Hamiltonian and then I know how to so I put the Hamiltonian here and do 

and behold I have fully. 

 

 Now I can evaluate that, so in the large particle limit N going to infinity I can take the 

logarithm to get the free energy and then I make the approximation I make the Stirling's 



approximation just what we done in Mayer's theory, we have done in the canonical partition 

function, again and again we have picked up the maximum term. 

 

 So of the sum I pick up the maximum term, yeah so I be see hope that one, I take the log 

whatever given and then I maximize it with respect to L and maximizing with respect to L is 

same as maximizing with is to L +, right? So remember if you know already have not noticed 

note that L is nothing but they may be essentially the magnetization of the system.  
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And so things that well and good so, then we can go and once we do that then the thing that 

happens is that I get an equation which is the following that, Okay? 
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I get an equation by doing that which is let me write down because it is not very visible here, 

L equal to tan hyperbolic, tanh
B B

B JL
L

k T k T

 
  

 
 so this is called a implicit solution or a 

transcendental equation, where I have a L on the left hand side I have L on the right hand side 

and given a B, I have to solve that the numerically. Now B is 0 the external magnetic field 

is zero, I have this beautiful solution which is this one, that means tanh
B

JL
L

k T

 
  

 
. 

 

In many places dimension K is introduced which is J by KBT then  tanhL K L , low 

and behold these has a beautiful phase transition scenario that when we show and this is 

given here these phase transitions scenario is described beautifully here. That when this has 

only solution of this equation is, that is at when temperature is high so gamma J by KBT is 

less than 1 then all even less than 1 only solution is L average, which is the maximum term 

actually. 

 

I prefer it L* but that L average that only solution is the magnetisation zero, so this is the 

random system number of spins, up spins is same as number of down spins. However, a 

solution appears when you go to lower temperature, so when you go to lower temperature, 

that means 1
B

J

k T

 
 

 
 temperature is small, so this becomes greater than 1 then a solution 

appears. 

 

Actually two solutions appears one of them are up spins and as for down spins, and you get 

the one can show that this root that 0 must be it corresponds to a minimum, not to a 

maximum so you can neglect, reject that term. So then the solution reduces to the following 

things that L, these two solutions to T greater than TC you have no magnetization disorder 

system below TC it can be either + or - it has to be true, you cannot; 

 

In the absence of magnetic field they are both are equally likely there is no way to choose one 

of the other, the way the solution is made by doing a graphical method which is meant which 

is shown here. You the graphical solution is done in the following way that you plot L and 



tan hyperbolic L and then you when they become equal to 1 then that is the solution, and the 

graph goes like this, crosses here at 1 and crosses here at 1. 

 

So, these are the two solutions that you get and it is a, let me see if I can get it a little bit up 

there should be something here a cursor. 
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So this is the, this line is the going selecting you when that become equal to tan hyperbolic 

and L, so this is the L versus L, this line L line, this the straight line and this is the tan 

hyperbolic, you know the tan hyperbolic very well because tan hyperbola set like this, and 

these are the solutions when they meet that is the solution of that and that is L0 + and - 

solutions. Okay, so this is part of these things works out beautifully? So next go to the next 

page.  
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So one beautiful thing of that is the following, of all these calculations is the following; that 

in general can be, it can be obtained numerically and one finds numerically, some very 

interesting things comes out. 
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That near the critical temperature when you are close to TC, close to TC is a subject of great, 

great interest because of the critical, what is called the critical phenomena and we have done 

Landau theory of the critical phenomena somewhat. Then you find that numerically that this 

approximation then L0 gives as like that when you are away from the critical point, but when 

you are very in a region close to critical point.  

 

Then the order parameter or magnetization behaves as,  
1/2

CT T  this is that means the 

magnetisation varies sharply as a fractional exponent and this exponent is called in a critical 



phenomena magnetic is called exponent beta. We use the same beta in many, many different 

ways this is equation of state also this is the same way Rho varies as again TC-T.  

 

Also the notation beta in Mean Field Theory, Landau Theory, Bragg Williams Theory all 

these cases this exponent beta is half which experimentally is found to be wrong, experiment 

you one found, yes there is a fractional exponent and the basic thing is current that they is a 

very singular behaviour it shows near the critical phenomena but this exponent is more like 

one-third. So this is called equation of state exponent and as I told you magnetization same as 

density in order disorder transition.  

 

They gain the track probability of one being occupied by copper or magnetization or you can 

say composition, you know one minus other density of minus density of the copper minus 

density of the zinc, is exactly same thing. All now in need not be strictly one-third between 

varies from 0.36 to 0.31 and all these things. But essentially very, very similar, so this is the 

essence of the critical phenomena and the critical exponents and the critical exponents in 

many different forms.  

 

But this magnetization and density is specific it also has a critical behaviour that we will be 

discussing little bit here. So now here the thermodynamic functions are summarized for these, 

so this is the magnetization the L0 and so, this is the free energy and then you get the, as I 

said magnetization, this is the internal energy and this is the specific heat, that goes like that 

and they gives in the following fraction, it in this case it does not. 
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So specific in the Bragg Williams approximation type does not diverge, but it increases like 

that. So this gamma J, if I increase the, this is combined gamma J as I increase the 

temperature KBT and it goes and saturates to high do like that it increases like that, and then 

similarly one can go to lattice gas. This property comes from this; Solution comes from this 

solution here, this thing.  

 

You can figure it out so that we just described in the previous page, similar behaviour you get 

indeed lattice gas, very similar equations that table of correspondence is given, and this is just 

exactly the same one model maps into the other model predictions are exactly the same.  
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Same will be binary alloy. So now this is what it is this beautiful thing given here where I 

have been referring to all this time. 
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That, these the gas liquid all of you know Van Der Waals, that pressure versus volume, 

pressure versus volume, volume is isotherm and this is the critical point when this is the 

inverse parabola that I was drawing as density versus temperature, if I plot against 

temperature I get that the top is the critical point and the lattice gas equation of state in the 

lattice gas and same in the this is the Mean Field Theory or simplest type of Mean Field 

theory Bragg Williams approximation not too simple as we have seen. 

 

 But it captures some aspects of the critical phenomena but does not as beautiful full aspect of 

critical phenomena which requires far more work and the same thing you get from Van Der 

Waals the same thing you get from Landau Theory and you need to do lot more work to go 

beyond this level of approximation. 
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So next one level what does better with the considerable more work is the Bethe 

approximation, but we are not going to do that so we will stop here.  
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As for mean Field theory goes, so what did we achieve? We got a beautiful equation in 

average or L, we also got a equation, similar equation dependence of the magnetic field 

which is a little bit more complex not too much and both has to be solved numerically, but in 

some cases as you showed that one can do after doing the numerical work there are some idea 

what one can do. 

 

And one get the magnetisation as a function of temperature in a critical exponent beta equal 

to half which is we call Mean Field exponent and that does not do a good job but what is the 

beauty of the whole thing is that, it does describe the phase transition. 

 

It does capture many, many aspects of phase transition of three systems; which is magnetic, 

gas –liquid, then binary alloy, order disorder transition in binary alloys. All the three so it 

shows that these three systems to a certain level is isomorphic and this was further in a 

beautiful paper that I recommend people to study by;  
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Yang and Lee 1952 in Physical Review he further pushed this analogy between Ising and 

lattice gas and binary alloy. Actually some of these things follows what we have done follows 

from these classic paper of Yang and Lee and these two gentlemen got the Nobel Prize for 

what their work on parity but in 1952 they wrote to Physical Review papers one after another 

where they mapped the Mayer’s Theories, so they connected the Ising model of Mayer’s 

theory and they showed that the cluster integrals that we do in Mayer theory are can be 

expressed in terms of zeros of the grand canonical partition function and huge number of 

results were done together and all these build things of Ising, Ising model binary alloy all 

these things were put together in a pop making paper of in these two papers and, you know 

what level Mean Field Theory working, what level not working. 

 

So that along with Mayer’s theory and Ising model, Yang Lee to those two papers played 

essentially the starting point or launching point sometimes obtained tends to our study of the 

phase transitions and critical point. So we might come returned later to the critical 

phenomena and a little bit more we already have done the Landau Theory and we have done 

the concept of order parameter.  

 

And you see here already that in the free energy then ultimately described in terms of a L 

square term and L is the magnetization and Landau theory or a parameter is the 

magnetisation, so Landau theories expansion of free energy in terms of L Square L for is 

fully consistent with the Bragg Williams. Or other way around though Bragg Williams has a 



microscopic basis it starts with the Hamiltonian but Landau's just writes down the free energy 

expansion.  

 

So it is quite satisfying to see that the Landau Theory is recovered in a more consistent 

theoretical framework. And so the concept of order parameter that we introduced in Landau 

Theory which is same as a long range order parameter here, which is same as the 

magnetization, which is same as the density, which is same as the mole fraction. So Bragg 

Williams approximation gives us a beautiful understanding of the free energy.  

 

That is happening the flattening of the free energy surface all these things comes out of the 

Bragg Williams what is periodically assumed Bragg Williams arguments and the basic 

physics by Landau. Okay, so we will stop here now we will probably get to use Lee and Yang 

again and we get to use Ising model again in future course. We stop here and now thank you. 

 


