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Welcome back. We shall continue with our study of Ising Model. As I stated several times in the 

last lecture on Ising Model that this is the perhaps the most important model of statistical 

mechanics. It serves several purposes. On one side, this is the simplest model of many body 

interacting system and at the same time, it captures most of the essential features like phase 

transitions, critical phenomena and many, many other aspects of many body problem. 

 

One thing one should know, remember while doing this that this Ising model is not just a model 

by itself. It goes on to explain lattice gas models in gas-liquid transition. It goes on to explain 

many aspects of order-disorder transition in binary alloys. It goes on to be used in polymers. So 

Ising model has this multivarious things. At the core, however, the Ising model is a very simple 

thing. It just has nothing but spins. 
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And so I can consider that this is a spin up and down and so the spin is essential element that 

spins can be either up or down. Second is that this is nearest neighbour interactions. It is very 

important, that is nearest neighbour interaction. So these 2 are essential parts that mean this guy 



here can interact only with this one and this one. So this nearest one interaction makes it really 

simple and one may wonder how such a nearest neighbour can explain so many different things. 

 

The reason is that this is interacting with these, but these are also interacting with this. So the 

effect of the interaction propagates and the spins can be up and down. They can also flip between 

the two states. So this is called two-stand Ising model and as I told you before that this is the 

model, which was introduced by a PhD student Ising in 1925 and he solved it and then, people 

immediately realized the beauty of this. 

 

However, one-dimensional Ising model does not have a phase transition as we discussed in the 

last thing. There are two cases that we solved for one-dimensional Ising model and one of them 

is that in the absence 1D Ising model. 

(Refer Slide Time: 03:50) 

 

One is in the absence of an external field; the other one we have the field on. Now the solution in 

the absence of an external field is very simple. We describe it is just 

 cosh 2 /
N

N BQ J k T      

That is the simple solution. In the presence of field, the solution is far more difficult, but still 

analytically doable. 
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The solution of this one dimensional Ising model. 
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So this is the Hamiltonian of the one dimensional Ising model that this J is the coupling term and 

so when σi can take. The notation we take that when it is up, the spin up, we give σ a value +1. 

When it is down, we get the value -1 and these are nearest neighbor, so one should really stick to 

have a thing here that this is saying that these interactions, of course i and i + 1 does that also, the 

same purpose it does. 

 



Usually one writes something like ij here and then put, because sum is both i and J. That is the 

other notation that one use, otherwise one can also use this notation. Now if you look at the 

character of that. So once this i spin and i + 1 spin, this is the i-th spin, this is the i + 1, when 

both of them rather take, well this is not the best example, but let us see when both are up, then 

both of them bring +1, +1, then these become –J and when they are down, then again -1, -1, then 

also you get –J.  

 

However, when one is plus and another is minus like here, then these will be plus and this is 

minus, this will be plus and this will be minus and this whole thing then contributes, this 

particular pair continues a minus term and then becomes plus. So when they are parallel, whether 

they are both up or both down, then they contribute negatively with the total Hamiltonian and 

that is favorable. 

 

So when two parallel spins are favorable, up and down that is called ferromagnetic interaction. 

However, when they are opposite spins, so in that ferromagnetic interaction, opposite spins are 

not favored, because this comes with a plus J. It contributes positively increases the total energy 

of the system and this is what now is an external field, but B actually has any two terms, one is 

the external magnetic field h and magnetic moment μ. 

 

So B is h.μ and this is the way the Hamiltonian reduces. This is a very simple Hamitonian. It just 

takes into account certain favorable interactions and certain unfavorable interactions and then 

one tends to solve this thing and see what kind of result that comes out. So one dimensional Ising 

model, as I said repeatedly can be solved exactly and we discuss it next time. 
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So this is again the Hamiltonian written, all the nearest neighbors and everything. 
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So partition function of these things will be written as the sum over all the configuration.  

   
1 2

1

1

, , ... exp
N

N

I i i i

i

Q T N B J B
  

   



 
  

 
    

So when you take these sum or all these, so σ1 is plus minus,  σ2 is plus minus and σN in plus 

minus. So you have all in all 2
N
 configurations. So it is good to do an analogy with gas that we 



have done. In a gas, if I take one snapshot at a given time, then I have the molecules at different 

locations. 

 

So the molecules at different locations give a given time at a given configuration of the system. 

Now, the molecules interact with each other and when the molecules interact with each other, 

then you get an increased energy and of course, in this case, you have kinetic energy in all case 

in Ising value, you do not have the kinetic energy, but we have the potential energy and we have 

discussed at length the potential energy is sum over the pair wise additive term. 

 

Here you have many nearest neighbours in your 3 dimension or 2 dimensional systems and you 

sum up the potential energy of interactions between them. So a given configuration of a gas or 

liquid is equivalent to specifying positions of atoms and molecules, at given positions and that in 

an instant of time, that position is changed and the new configuration is created and your 

Hamiltonian reflects or captures these change in energy with respect to change in configuration. 

 

So when the system goes to a configuration, which is low energy configuration or favorable, then 

in the Hamiltonian that is reflected with a low energy or negative energy, which then in the 

partition function in 
He 

 term, which is here, it will remain as βH term, it has more weight. So 

all favorable configurations come with a larger way. Let us now analyze how that is affecting 

Ising model. 

 

In an Ising model with a ferromagnetic interaction, where parallel spins are favored, whenever 

the spins have a domain when spins are parallel, then that comes with a lower energy. So those 

configurations, are picked up. So this is the reason why at a low temperature, you get a transition 

to a ferromagnetic phase. Now one dimension, as I discussed in the last class does not have a 

phase transition. 

 

It does not have a phase transition, put blankly and very straight forwardly simply because it 

does not have sufficient number of nearest neighbours. It has just two nearest neighbours in one 

dimension and that is not enough to give rise to one. There is a beautiful theorem that goes that 

is, I discussed in my book. I will just refer to it a little bit to Ashcroft-Mermin theorem, which 



formalizes what I said, that why 1D cannot have a stable ground state or ground energy state, 

except that temperature T = 0. 

 

At temperature T = 0, β is 1/kBT that diverges, so only this one particular configuration is picked 

up. So now, the idea is then to calculate in this partition function, but would like to tell you that 

the purpose of this class is different from the last class. I am just preparing little bit, spending 

some time to talk about and then go over to what I am going to do in this class. So I write now 

the canonical partition function, which is the function of the temperature, total number of spins 

and the magnetic field B. 

 

And that is written instead forwardly from the Hamiltonian, which is given here.  
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That Hamiltonian is written and gets into this partition function. It is rewritten again essentially 

for certain periodic boundary condition, which we do not need to discuss now, but it essentially 

says that you can make it into a ring and that is possible only in 1D, this beautiful ring thing, so 

that these, these and these spins, it is only one next to that is the same configuration and so make 

it into a ring that there is an advantage of mathematical representation, which allows us to solve 

this problem. 
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Now, this I discussed little bit that this is solved by making a method called transfer matrices and 

This is essentially discussed here,  

 
1 1 1exp

2i i i i i i

B
M J      

  

  
    

  
 

I do not want to go into that detail, but I solved at length in the last class the case when there is 

no magnetic field B = 0. When B = 0, then this Hamiltonian, this part is not there. It is very 

simple. Then, I can show that this will be e to the power –β J and get that goes to be cosh and 

then you get cosh (2J/kBT) to the power N, that partition function. 

 

And then, one can show that partition function does not have a phase transition, which is 

similarly, I just tell you with the well know results in this. 

(Refer Slide Time: 14:29) 



 

I discussed a little bit in the last class. 
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How you go through a transfer matrix, then how you use a unitary, this aims a symmetric matrix, 

which is nothing but this. 

  1 2 2 3 1Ni
IQ M M M     
  (as 1 1N   , under periodic boundary condition) 

  1 1i
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  
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This x and y or β J and β B and the diagonal and diagonal terms, but I do not want to go into too 

much detail into that today, but I just want to show you the final results of the partition function, 

which is for the time being for us, this is okay. 

1 1 1 2 2 3 3 4 4 5 5 6

6
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i i
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    
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So this is the final expression of the partition function of the N spin in the presence of a magnetic 

field and if the magnetic field goes to 0, then one can show that this term goes to 0 and you can 

combine the two things, this goes to 1, and you will get  

 
N

J J

IQ e e     

that is when B = 0, but important thing is that this is already you can see this is considerably 

difficult and complicated partition function. 
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However, even this complicated partition function, which was derived by Ising many years ago, 

does not show a phase transition. You can now go and get the standard this ln, you get the free 

energy from the partition function  

 , ln ( , )I B IA B T k T Q B T   

and that quantity becomes just this quantity. This probably is not needed at this point. 

  2 2 2cosh( , ) hln s  inx x

I

x

BA B T e y e y eNk T   
  

  
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And this term now when you plot and do magnetization,  
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magnetization is nothing but total number of spins, so magnetization is number of spins that are 

up, so that can be obtained by number of spins up minus number of spins down. So it is just sum 

over the state of the spins. This gives you the magnetization.  
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When you plot the magnetization against β, β is 1/kBT, then you see that when β is 0, at high 

temperature, up spins and down spins are equally favored. 

 

So you have then up spins and down spins equally favored, this is again equal to 0, which is 

starting here. Now on the other limit, when T goes to 0, absolute temperature, then β goes to 

infinity and then as I told, that then the parallel spins are picked up, because they have lower 

energy, but see the most important thing. The most important thing is that that continuously goes 

steep. 

 

So this is the very important result that shows that one dimensional Ising model does not have a 

phase transition. Again the details are done here. As I said that this magnetic field is sum over σi, 

which can be obtained by taking derivative of, and this you all know, the magnetization is 

derivative of free energy with respect to magnetic field and these are things we have done many, 

many times and written like that. 

 

Then you can do this little algebra, but even in this case, little algebra is not too little because of 

this sinh and cosh terms are involved, but this is the final result, that one obtained after doing 

these calculations here. So this is in the presence of the magnetic field. In the absence of the 

magnetic field, it is much simpler and you essentially have the same behavior that means you do 

not have a best condition. This situation is completely different. 
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So the 1D Ising model does not have a phase transition. This is a very significant result, does not 

exhibit any phase transition, but even then the one dimensional Ising model plays an extremely 

important role. So even then, I will just spend one minute on the importance. This is the model, 

which is used to do polymer dynamics. It has been described Micelles and reverse Micelles. 

Many, many models, many, many cases even one dimensional Ising model has been used. 

 

And one of the most successful theory of dynamics interacting system is based on one 

dimensional Ising model. So now that one dimensional Ising model we read, we know how to 

solve. I worked out in the last class the zero magnetic field and in the presence of complete 

magnetic field is fairly demanding calculation, even though it is just one dimension, so I just 

referred to the book and the transfer matrix method, which you can do. 

 

So now, we have to go to the next case. One dimensional Ising model gave us some 

understanding of the interacting systems and the temperature dependence, which does not show 

first phase transition, pretty nice features in many different ways, of course some beautiful 

solution in terms of cosh and sinh. Now we want to do, okay what happens and that was the 

question immediately asked after Ising that what is happening in other dimensions. 
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And that turned out to be really, really highly enjoyable, but very difficult journey for physicist 

and chemists. So the higher dimensions, people, though it was 1925, then it took almost 20 years 

to get the solution in the 2D. So in the two dimensional Ising model, now we have, say, a square 

lattice, three dimensional kind of face-centered or body-centered or simple cubic lattice also. 

Here you have all different varieties. So in this case, what you have? 

 

You have spins in again, up and down, but you have spin at every lattice site. So these arrows are 

in the lattice side. So you have now a spin on each lattice side and this spin can again do the 

same thing. Spin can again spin and again point up and down. So that part remains the same. So 

in the Hamiltonian, we write the Hamiltonian. 
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This remains the same.  
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So Hamiltonian remains the same, but we are working on two dimension, so i, j and again here is 

the neighbour. So now in the case of higher dimension, I can say number of neighbours, which is 

now denoted by γ, in this class. So here then, in my 2D square lattice, I have γ = 4. If I go 

hexagonal lattice, then I will have a γ = 6. If I have simple cubic three dimensional lattice, then 

again my γ number may be estimated as 6. 

 

But if I now go to face-centered cubic lattice, I will have number of nearest neighbours 12 and 

body-centered cubic lattice, I will have 8. So then, in this treatment, in this Hamiltonian, the 

information about the lattice is coming through the number of nearest neighbours. So not only 

that we have spins up and down, we will also have the nearest neighbour interaction. So those 

two basic features of one dimensional Ising models carry on to two dimension and three 

dimension and it is ready now. 

 

But the two dimensional things are exceedingly difficult and it was solved and it took large 

number of people tried to solve the two dimensional problem, it was solved by Lars Onsager in 

1944 by a solution, which is considered perhaps the most difficult calculation ever done in the 



history of physics or science, this Lars Onsager solution. But Lars Onsager solved it in the 

absence of magnetic field. 
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What is the Onsager solution? It is a very difficult solution, but I will say the basic features. It 

exhibits a phase transition. It exhibits a critical point Tc, below which the system up spins is 

ferromagnetic and above which it is not. So that is a beautiful result and hugely difficult 

calculation. The Onsager solution was in the absence of magnetic field (B=0). This was with 

finite magnetic field was done, another calculation by Yang. 

 

And he found then the other beautiful thing that in the presence of a magnetic field, the phase 

transition becomes first order and it exhibits hysteresis. So the basic things of magnetic 

phenomena was captured by the two dimensional Ising model. Three dimensional Ising model 

nobody has solved three dimensional Ising model. It remains an unsolved problem. People have 

done huge amount of numerical work. 

 

People verified that much of the features of two dimensional Ising model remain same as the 

three dimensional Ising model. People have used three dimensional Ising model for experimental 

systems and it has been found to be remarkably successful in explaining many, many things of 

people, but the fact remains that three dimensional Ising model, it has not been possible to solve 

mathematically. Many, many people have tried. 



 

Many, many people, I know, have tried and they could not go anywhere. Two dimensional Ising 

model itself is very difficult and I can talk you of the solution and I can tell you of the basic 

features, which is more or less here and there are some many things that really went to critical 

phenomena that I want to talk a little bit later today that how these things go on. But before we 

do that, this Onsager solution, I want to go a little different path. 

 

And I want to do something, which captures the physics of the problem that we are trying to deal 

with, without really doing this amount of work that is required in two dimensional Ising model 

and this is an approximate method that has been invented over the years and has been 

successfully employed. 
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This is called the mean field approach and the mean field approach also goes by many other 

names. It goes by the name of van der Waals. One can show the van der Waals equation of state 

that we have studied that van der Waals is essentially mean field, then we have done Landau 

theory at great detail. Then Landau theory is also this mean field theory. However, what we are 

going to do today now? 

 

Do the mean field theory in the context of the Ising model and we will get the results of the Ising 

model. The results are not 100% correct, approximate, but it will capture many of the physics of 



the two-dimensional, three dimensional system. Mean Field theory is really bad in two 

dimension. It becomes more and more accurate as we go to higher and higher dimensions and 

there is always a critical dimensionality, where mean field theory becomes exact. 

 

But in three dimension is bad, but in four dimension it becomes pretty good, so we will now go 

on develop the mean field approach. The reason we will develop the mean field approach that it 

has a beautiful insight and very useful insight that it provides in addition to the results, which are 

highly useful and in more places, routine applications, this mean field theory plays a very, very 

important role, that is like Landau theory. 

 

And we actually do not go back to a very formidable Ising model kind of compelled interacting 

system, just like for the Mayer’s theory, breaks down to a point, then what we will do? People, of 

course, try to extend it, like people try to solve three dimensional Ising model exactly and could 

not do it, but then the alternative approach that appeared is to take on the education for there, but 

then build a completely different model, like the Landau’s theory. 

 

Then Landau’s theory wanted to take correlations that how he went on to go over something 

called Ginzburg-Landau theory. So basically, one takes a step backward and develop an 

approximate theory, since the really exact path is kind of blocked for you. You can do 

simulations something, but you are undergoing very analytical one. So in that case, you take a 

step backward, build an approximate theory like Landau theory. Then go forward to make that 

theory far more understandable and far more, far more useful. So we will now go to the mean 

field theory and try to describe what is the mean field theory. 


