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So, now we are going to get somewhere. So, we have derived this beautiful equation  
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Now they are very interesting thing to look into. Now if I have against n I am using the 

corner because I need to talk of this equation quite a bit now. This is my free and landscape. 

Okay and this is my critical thing. Now here at small n, near n=1, at the limit and in this scale 

when n is very large could be of the something of 200 or 300 typically. 

 

Then these region particles are trying to go and come back and there is enough of them. So 

this is the region it is like equilibrium. So when I go to the limit in going to 0, you know I am 

entitled to going to 0. Because I you know and I am made it continuous. Actually it does not 

go below n=1. But that does not make any difference, whether I go to 1 or 0 do not make any 

difference. 

 

So, n going to 0 f(n)/C(n) goes to 1. However, when n goes to infinity that means n goes to 

infinity means here all the way there is nothing there. Okay before that I have the maximum 



after maximum. It just goes downhill. So n going to infinity it is quantity event is 0. Okay this 

is third is the most important thing. In a steady state when there is a flow of train that is what 

I said flow of train I again appeal to you remember that the train is going in front of you and 

one after another compartments are coming in one after another in regular interval. Train has 

constant velocity and speed. What does it mean? 

 

That means our case what is happening That means compartment at (n – 1), the next 

compartment is n, the next compartment is (n + 1). There is a steady state flow. What does it 

mean? That means J is independent of n. Now I have this wonderful expression. Now J is 

independent of n. So what do I know? I know the limits. So I immediately now write down. 
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Now I can do an integration because I know the limits. So I do the integration 0 to infinity. 

Okay so I bring d here. I bring dn here and then I do this integration 0 to infinity. At infinity 

it is 0 and at n equal to 0 a infinity f(n,t) at that limit. So is there is a d here. So it just goes 

these become evaluate at n = 0 and n equal to infinity. Now n equal to infinity is 0 and n = 0 

f(n) = C(n). 

 

Okay so I just and this is a minus in front that because in wall limit. I just get 1. Okay so then 

I get the beautiful relation 
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 I am almost there. Now so this is - 1 in bracket - 1. So that means my beta I and beta I and 

S(n) because they are in a denominator of denominator they comes out. 
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So now I have the following expression. Right so I have to evaluate this thing. Now let us do 

little bit. So we have done the main thing. We have little faster rate. I will go now. 
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So this is the thing I said since the equilibrium prevails for smallest clusters. Thus, f(n)/c(n) 

goes to 1. But when n goes to infinity this goes to 0 because of actual combat post critical 

size is rare actually not rare. It is not there then. 
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So now I have to calculate the rate. Now what do I do? So this is my C(n) this is beta S(n). 

Okay now I need, remember, I need the J at the critical cluster. So S(n) become a S(n*) or 

S(nc) and then I have to evaluate this integral now and so important thing to assume that this 

is minus note that this particular integral that I have to do these integral that I have to do this 

is 0 to infinity. But I will come to it - 1 to + infinity. 

 

Then I write C(n) the - 1 is there C(n) is  

 C( ) (0)exp / Bn C G n k T       

I say okay I want population here. So because I have an integration to do. So I now say this I 

write C(n) but the; because this is a method called the method of steepest descent or many 

other goes by the Laplace’s formula. Many methods so basic idea is that around here C(n) is 

very small in this region. In this region C(n) is very small then that is the it is in denominator. 

So in the integral over the n these quantity here it dominates. 

 

And so then I say okay C is I can now consider a only a small region around here. So the way 

I would do that then I will say. Okay C(n) is the C(n*) and then these are harmonic. I assume 

it to be harmonic and I write the fluctuation here the n minus n star square and then I need to 

do the double derivative because this I expand the ΔG(n) here as  
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Okay so that is then by two and by kBT is here then it becomes this. Let us explain this again. 

The little tricky I have to do the integral. So I have to do this integral. This integral I am 

going to do and these integral I use the following property. That the C(n) is very small here 

and this is the smallest C(n) in this landscape which is C(n) is  exp G n     and by 

Boltzmann distribution and this is maximum this G(n) is maximum is ∆G(n) is maximum 

means C(n) is minimum. 

 

So in this integration C(n) is minimum here. So 1 - C(n) is maximum here. Okay this is I am 

saying it is used again and again. So C(n) is very rare in a barrier top. So one over C(n) peaks 

and so it is enough in this integration to take care of the region near the maximum. That 

because of this advantage that we are taking. That the advantage that C(n) is this quantity is 

minimum. So 1 over C(n) is maximum. 

 

We expand it in a harmonic thing and this is the second derivative and then this is a Gaussian. 

So I can now do this integration completely. So everything before I have done that I have the 

beta Sn so beta Sn and 1 - 1 of C(n*) that will come up. So that is so this Sn beta. Yes, in my 

earlier peak C(n*) coming because I am making approximation C(n) C(n*) then the Gaussian. 

 

So that inverse that come from so this is fully documented by me I know Z is a leftover of the 

integration and that integration I can do because these Gaussian function now. Okay so minus 

infinity to plus infinity I can make it also 0 to ∞. I do not care because there is a these 

integration shows you sharply fit the function. It is so sharply peaked that I can always make 

it to -∞ without any loss -∞ as it is given here. Then this integration is just √(2π/a) and the 

Gaussian integral and that gives now the ∆G
2
. 2 is there when the 2πkBT. 
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So I now get this beautiful expression. The rate of nucleation so everything is determined I 

have now. I have rate of nucleation is given by 

ℝN = ℤβIS(n)C(n*) 

The rate of infringement I  that comes from kinetic theory surface area and the critical 

concentration that has to be there. We know that and it is reproduced beautifully. And C(n*) 

is given by Boltzmann’s constant. The concentration of monomer because I start here and go 

there. This is the monomer and this is the n*. So that is given by n*. My probability of being 

here is given by this expression. 

 

And my infringement surface giving that and these vary as Ludovic factor is called the non-

equilibrium effects that take into account of going the both ways these exactly we do in 

chemical kinetics. We call we sometimes called that small cost equation approach. And they 

all these things happen very similar time and this is exactly what is Kramer's theory also of 

chemical kinetics very well known theory of chemical kinetics that will do little bit hopefully 

someday. 
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So now what is Zelda(ℤ)? Zelda is this beautiful expression. Let me write down that.  
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And rate is Zelda factor impinge main surface ratio C(n*). This is the rate of rate of 

nucleation. The reason I did it in detail in such great detail and more detail is given in the 

book and of course I think you what I need here a little bit more straightforward than what is 

given in the book. 

 

Big book is little bit writing some more detailed stakes and little bit more talking has been 

done which is not necessary. So basically these summarize the whole thing is that we did a 

calculation of the rate of barrier crossing. You know is very standard thing in chemical 

kinetics and many other things but ℤ did it without knowing anything. But I do no, the same 

times molecules carried this barrier lesson linear. Indeed, Michaelis-Menten and all these 

things all in the same time the same thing and this very general approach. 

 

The formula of these two by kBT root over these things is essentially goes as Laplace’s 

formula. And so a few more comments we have done.  
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So this is what I was talking about the temperature dependence. A very strongly temperature-

dependent phenomena these super saturate. These sometimes it is not just a temperature but 

pressure and super saturation that means you increase the pressure you see nucleation. That is 

a way to see the nucleation in a cloud chamber and these are the different super saturation. 

The super saturation S3 is more than S2 than S1 and then when the super saturation increases, 

the size of the nucleus comes down and barrier comes down so activation free energy 

decreases. 
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The reason is that if you transfer into free energy landscape then what is happening is that as 

we increase the super saturation then these ∆Gv which is ∆Gv this quantity is increasing. As 

this quantity is increasing then R* is decreasing and G    is also changing.  
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But this is changing much faster. So as we increase super saturation or in lower temperature. 

We will call it increase super cooling like water. Instead of 0
o
C I am going to -10

 o
C to -8

 o
C. 

 

This you can say - 5 - 10 - 20 below the freezing and then the barrier comes down as I said 

and the size comes down. Then what is really interesting you find that nothing is doing. You 

go on suddenly it becomes explosive like it is shown here. The rate of nucleation suddenly 

increases because the barrier has to come down to a level where thermal fluctuations can 

access it and that exactly happens. So this is the picture very important picture of the 

nucleation theory. 

 

(Refer Slide Time: 19:12) 

 

Next is that as both runs between bulk phase and surface known for several systems notably 

for water and many other systems a quantity variation across it is possible. And it is there are 

certain limitations. There are very detailed things like the surface tension we are using is that 

for coexistence. But we are using it in out of equilibrium. So there is certain limitation there. 

Then we assume it as a sphere that is a limitation there and many times they are little 

elliptical simulations have showed. 

 

And then core nucleus is liquid like but surface nucleation we are assuming this is short 

boundary and core is that of the new phase. And these the old phase that is not quite like that 

because this is some extent it is cold like but then there is a diffuse region and that is also an 



important thing that we have not discussed and that is done by theory called data and density 

functional theory of expression. That we can do only when we do the density functional 

theory which I will explain little bit density functional theory later when you do the integral 

theory. 
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And there is this beautiful problem. Heterogeneous nucleation and that heterogeneous 

nucleation is described like that you are on a surface. The basic idea is that surface tension of 

the; you reduce the exposure of the liquid to the old new phase to the old phase. And the 

surface tension of these could be much less and as a result you get a free energy barrier that is 

the original nucleus which is the barrier gets substantially reduced and the amount it gets 

reduced is a quantity  W   which is that is given by  

     
2 21 1

( ) 1 cos 1 cos 1 cos 1 cos
2 2

W W W W W             

I am not going to derive it is rather long derivation. But W  is determined by 
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The surface tension of and these surface tension and that is the expression that is given. 
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So that this heterogeneous nucleation barrier comes down. This is homogeneous nucleation. 

But to describe it a heterogeneous nucleation you need over homogeneous nucleation and so 

that expression is not given here. But it kind of said that if the angle is 90 then barrier 

becomes half. If it is 3/8 then barrier becomes much less 0.375. So this is an important thing 

and there are some many other things which we would be describing later. So we will start 

next a little bit of Ostwald step rule then we go over to some other aspects of statistical 

mechanics and that will be in the next class. 


