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Nucleation Part 2: Kinetics of Nucleation 

 

Okay, welcome back, so in the last class we started on a beautiful subject of which goes on 

the kinetics of phase transition and but it is essentially, a thermodynamic treatment and we 

have included these in this course because of the generality in fact, phase transition itself, if 

you have noticed is quite general, it does not talk of any given system, it is applicable to all 

systems. 

 

That means, I can I am talking on nucleation not just of gas liquid at the same break, I am 

talking of freezing, formation of ice nuclei melting, formation of water inside ice, I am 

talking of magnetic transition in the presence of a magnetic field when it is first order in the 

absence of magnetic field is a second order while the grand generality is appeals to some 

people. 

 

This grand generality at the same time makes many people uncomfortable because people 

many times like to think in terms of specific system, specific examples but there are things 

where generality is extremely helpful and useful because you learn one thing you can apply 

to all different systems as I was telling, my ex-student in Japan, he learned these things in a 

class you know this nucleation and spinodal decomposition and he found; he is an 

experimental physical chemist not my own student but he was just taking the course. And he 

found it extremely helpful even now, he is so grateful whenever he comes to his Professor 

now in IIT Madras or IIT Chennai, whenever he comes to Bangalore, he make sure that he 

comes and sees me such is the reach of such a problem that you can apply to almost many, 

many disciplines okay. 
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So, now we are trying to get these thing going, so basic idea then is that we have this kind of 

a scenario and this is G(R) and this is R and these are critical nucleus and we have to cross 

this barrier, I described the analogy with chemical kinetics where it is; we know how to do it, 

here we know partly because we know the probability of being in the top has to be 

Boltzmann e to the power minus G* that we know. 

 

But you do not know how to calculate the rate of going over, in chemical kinetics it is a bond 

breaking or twisting there we can write the detail motion of that molecule rotating or bond 

breaking but here we do not have that, so how do we get it? This was the one which was done 

by Zeldovich which as I told you, he is a nuclear physicist.  

 

So, the way is now done is there 2 factors is the probability or number of critical, if you 

consider rate as a flow like water going through a pipe, the rate of water; we talk of rate of 

water flow similarly, a new phase is forming and from the old phase then if we can see that 

the rate as a time independent process, then how do I show, I will say okay, number of 

nucleus at the top, a critical nucleus; number of critical nuclei nc. 

 

And the that is I can find on the top of the barrier and then at the rate it will go over, so these 

I said is the same thing that we do in chemical kinetics this part and this part is the one that is 

non-trivial and I need to calculate that. So, if I now have a nucleus sitting here at the top then 

what would let it; if I have sitting on the top, a nucleus sitting in the top what will make it go 

over? 

 



It will make it go over, if another particle comes and impinges on that so, I need a another 

more particles actually not 1, several but this is the radius R, so this is already a pretty 

macroscopic coordinate, so by changing r means several monomers is coming, so these 

monomers are going to impinge on this, the very, very interesting thing you know in many of 

examples, many problems, we get this quantity, I remember I passed a comprehensive at in 

Brown University because I could argue this one, this was the problem given in a 

comprehensive exam in PhD exam without telling us and during that time I did norm 

nucleation and but I could figure it out by using kinetic theory of gases that okay, the number 

of molecules that can pass, I realized that what could be; then I said okay we all done in 

Maxwell Boltzmann kinetic theory of gases that there is a unit area of a surface. 

 

And the pressure is nothing but the molecules coming and colliding with it, what are the 

number of molecules colliding with it that is within certain parallel pipe, remember we draw 

the parallel pipe and okay these are the number of molecules in these and which has the 

velocity towards the wall, so the rate of impingement of monomers, it is very similar logic 

and on the surface. 

 

But then also the surface area of the nucleus; larger the surface area more; now you may 

argue why I am taking different surface area because in different temperature, the size of the 

critical nucleus is different, remember * 2 ( )VR G T  and VG is temperature dependent, 

so as temperature becomes larger and larger and I will come to this little bit more detail now, 

maybe I could just do now and then come back because it is a very important thing, I had it in 

my last slide, I forgot it. 
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So, if I now, plot this ( )G R  against R at different temperature, then I know  is also 

temperature dependent surface tension but much weaker than this thing, ( )VG R  however 

when they are at equilibrium 2 phases; old and new, then this is 0, VG  is 0, so R* is infinity. 

So, when I go little bit below then R* start decreasing but still can be very large, so I can 

consider the following situation that I can say okay, this is when it is large, it equals to 

coexistence, then it. 

 

So, as I lower the temperature, so if it is T3, T2, T1, then T is greater than T2 greater than T3, 

so barrier comes down, size becomes small as G  increases, so this is the reason why the 

surface area depends very strongly on temperature, then also depends from system to system 

because these temperature dependence and the free energy landscape completely varies, like 

if I talking of melting is different from that of freezing or more than that you know from gas 

liquid condensation that is what I wanted to tell. 

 

So, this nucleus with the surface S(nc) sitting, so then I would be the rate would be 

proportional to the rate of impingement, let me call it I and S(nc) okay, so this should be 

proportional to that and then I need a rate to go over that I call Z. 
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Then, I can go now and write my; so this is the expression, so this is the probability of having 

a number of critical size nuclei that is the nc, then this is the rate of impingement on the 

surface and then the probability, there is also a probability that during the every time, unit 

time, this  is the rate of impingement per unit time, per unit time which can also disappear, 

that means it can also come down here. 

 

So, there is a non-equilibrium process and this is what brings it very close to chemical 

kinetics that I will discuss a little bit later, that effect that it can come down is included 

through these factors Z which is called Zeldovich factor. Now, we will go through the 

calculation and the calculation is a little complicated and but we have to live with it, this is 

one of the probably after our canonical ensemble calculations, this is the most detailed 

calculation that we will be doing. But we have to do that anyway and we will go through that 

with heroism, so this is the thing we have to calculate Z, how I calculate Z. 
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The way I calculate Z now is that I consider, as if a train is moving, so the growth of cluster 

is going like this, this can also, so I add 1, it goes there, then I add one more, An-1 is becoming 

A, then An+1,  it of course disappears that I will consider later, right now I am trying to set up 

a train and my aim is that just as we were in front of a; stood in front of a passing train, then 

this compartment after compartment going in front of you. 

 

When the train moves in a steady state velocity, then what happens; each compartment comes 

to you at a regular interval, okay and that is a steady state. Steady state means just a flow of 

water in a steady state that means this is a time independent process, so I want to find a time 

independent rate, rate is always; when rate is a constant is a time independent, it gives a 

steady flow, completely independent, a time independence is equilibrium when nothing is 

happening, okay. 

 

That is a; if I take a derivative of all the quantities, then at equilibrium then they are all 0, 

concentration, time derivative of concentration is 0 but here it is not, this is the next time 

independent thing that is steady state but it is not equilibrium, so we have to make a 

distinction between equilibrium time independent process and steady state time independent 

process.  

 

I am going to do here that steady state because I want to study the rate, whenever I talk of a 

rate, it is a time independent is a steady state otherwise you do not have a rate, then we say 

time dependent rate that is a different thing altogether, okay. So, now I am going to calculate 



the flow as if a train, so however this quantity that I called c(n) that the this going over, I can 

write as Boltzmann, this equilibrium c(n) is an equilibrium concentration. 

 

I now change my notation, I might change my notation from R dependence to N dependence 

that means because I want to talk of adding of impingement of particles on these things I and 

then growth I want to do in terms of number plane, the number of particles in the system, 

then I know there is one to one corresponding between radius. If I assume a sphere then 

volume into 34 3R nv  , okay. 

 

So that means, R scales as 1 3n  because this volume of one molecule of volume occupied by 1 

molecule into a number of molecules in the cluster nv that has to be 34 3R , both have same 

dimension and volume okay, this is a trivial. If that is so, then I know this is 34 3R  per unit 

volume then that is nothing but proportional to n and that one volume I observed in n, so that 

because per volume and then v I multiply, so these become dimensionless, it is just but sorry, 

dimension of energy, energy per particle. 

 

And now there is a surface term which is R2, which is nothing but 2 3n  okay. So, my earlier 

expression 3 24 3 4R R     that becomes 2 3

nn G n   . Why I am going to end the 

representation because I want to add the molecular picture; does not allow me a molecular 

picture, it allows the thermodynamic temperature. 

 

Because I can; I could do the surface tension but now I add a molecular picture because I am 

adding molecules one by one and it is flowing and then I have the following ingredients, I 

have the Boltzmann distribution and I have conversion of G 2 3n , okay. 
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Now, I want to see that how the; now I introduce a very important quantity that is f(n,t); f(n,t) 

is time dependent, this is the probability of having a particle a cluster in nucleus of n particles 

at a time t, okay. Now that thing is changing, it is changing because I have a flow and as a 

result of flow, that this guy is decaying by; I am just saying one-way flow now, if I do the 

equilibrium I would did both the two sides that I will do later, so these guy is changing 

because of that flow, the one-way flow very important, the one-way flow. 

 

This is decreasing, because molecules are moving now, so then Jn - Jn+1 that is the way this is 

changing, Jn(t) I already wrote that is my impingement, time dependent probability into 

surface minus; now this is very interesting, now this is; this n+1 becoming n also and that is; 

so this is this Jn(t), it is going to n to n+1 okay, so it is going to n to n+1 but it is on the other 

hand n+1 becoming n and n+1 becoming n by evaporating that is n+1. 

 

So, if I consider this guy, then this guy is going on that but in the previous step it is going to 

these but on this enzyme, a part of that is in the flow, it is going at that rate but at the part of 

that is coming back, so I am just considering these process as I said, I am going to consider 

only these process and in this process, it is going by impingement but this also disappear by 

evaporation. 

 

So, if amount going a, some amount is coming back here, now I can do also this case but 

doing 1 in enough for to get me the flow, so this is a forward and this is the backward, of that 

I have an estimate of the rate of impingement on a surface from kinetic theory of gases, as I 



told you the Maxwell, Boltzmann, fn(t) is a time dependent probability, very difficult thing, 

right now I will see that we do not need that, we need that if more difficult calculation. 

 

So and I have the surface area of n and n particle, this is disappearing; evaporation also 

depends on the surface area clearly but so this I have a control, S(n) I know, S(n+1) I know 

surface, the surface of a sphere of radius R is 2 3n  I know that, I do not know what is w(n+1), 

these are very, very interesting condition here. How do I find w(n+1)? 
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Now, there comes a very, very important quantity, let me get a page to explain that, so 

( ) ( ) ( , ) ( 1) ( 1, ) ( 1)n IJ t S n f n t w n f n t S n     . Now we use something I go back, I have 

to calculate this quantity and this is another beautiful thing that we use a lot in your chemical 

kinetics undergraduate we have use, is the principle of detailed balance, one of the most 

honour, most respectable, the principle called principle of detailed balance. 

 

Onsager used it, generalized it and microscopically which in his famous 1932 paper or 

irreversible thermodynamics and he got Nobel Prize for that. Now, principle of detailed 

balance says that if I have now at equilibrium, I have to consider back and forth, steady state I 

got it flow, you have to make a distinction, so I have principle of detailed balance is a very 

strong statement. 

 

It says that if you are at equilibrium then it is not enough to have a steady time independent 

but each state must be individually balanced that means, these state, there are number of 



particles going up in towards midway and must be same as A to B, so individual steps, this is 

the principle of detailed balance, so microscopic reversibility, extremely important that is the 

only condition that guarantees equilibrium. 

 

So, equilibrium means flux is 0, no flux, it is everything is balanced but we are ultimately 

calculating a steady state, we are flying a flow but see how we are using equilibrium at the 

same time, this is exactly done many, many branch as I told you if you, enzyme catalysis, 

kinetics Michaelis Menten, then you have the Lindemann, famous chemical first order 

kinetics unimolecular dissociation reaction, everywhere this is use. 

 

But it was initially first done by Zeldovich okay, now all of maybe, all of them have done 

independently but it is the same thing at least I am just mentioned 3 very famous theories but 

probably 10 theories uses this kind of logic that is why I like nucleation because it is being so 

much beautiful thing, so okay now Jn=0. If I put Jn=0 then what; that is equilibrium. 

 

But I have already defined that Cn is the equilibrium distribution, so at equilibrium f(n,t) 

becomes time independent but at equilibrium;  now I put 

0 ( ) ( ) ( 1)c( 1) ( 1)IS n c n w n n S n     . So, what does it mean now; that means, I get 

w(n+1), so w(n+1), these quantity now become equal to 
( )c( )

( 1) ( 1)

I S n n

c n S n



 
, so this is my 

w(n+1). 

 

So, I have now by using the detailed balance, I got an expression for w(n+1), let me write this 

down clearly because I need it, so w(n); now what I going to do now; I am going to put these 

quantity into these equation, okay. So, I am going to this expression is going to be substituted 

in this one. 
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Once I do that what do I get sorry, bear with me for a minute okay, so I got this now, now I 

noticed the following thing Sn plus, Sn plus get cancelled and I get I common, so I take 

IS(n) out, I also take C(n) out common, then I get 
(n, ) ( 1, )

( ) (n 1)

f t f n t

c n c

 
  

 , so I get for J(n) 

this expression, okay. Now, if you look at this expression what do you see; you see a 

beautiful thing, you see that this quantity, this f(n,t) and they are now, I can write it in the 

limit of large N, I can call it a time derivative. So, this thing can be written as because this 

f(n+1) is 
( , )

( ) ( )
( )

I

d f n t
S n c n

dn c n


 
  

 
 , this beautiful thing. 


