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So now we go to the Landau theory, which I will spend about I think is some 15-20 minutes on 

that. So Landau theory is this saying that although is largely phenomenological, but it is the 

beginning of the conceptual framework of understanding crystallization. So read this, but also in 

the mean term also let me briefly tell you. So in 1937 when Landau did the theory of phase 

transition, it is a general theory of phase transition. 

 

And it paves the way for everything that followed, a very simple theory, incredibly simple theory 

and but however, this generality that it allowed and the new concepts that brought in, which was 

not there before and one of the new concept that Landau brings in, he just did. He asked the 

questions that I was asking here. 
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How do I take the characteristics here in the old phase which I know contain the key for the 

phase transition? So how do I do that? What are the way I go about incorporating this. So he now 

guessed that you go way to do that that I need to have, so I had the minima. I have the minima in 

the liquid and I have all the correlations here. So now if I can expand the free energy of this 

phase in terms of free energy of all the characteristics of this phase, then I can look for a certain 

discontinuity. 

 

So that is of course ambitious and it is the reason, it does not fully work, but that is the one it is 

called. So this is again my favorite line. Some of the predictions are not quantitatively correct, 

but the main merit and the strength of Landau theory is its tremendous generality that comes with 

a simplicity that is unmatched in theoretical discussions and you will see that, but the reason I am 

preparing you for that, though it is a very simple theory, it opened the door for many theories and 

it is the generality that is absolutely mind-boggling. 
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So what did he do? After saying all these things, what Landau did okay, let me write down the 

free energy of the new phase, where F is the new free energy of the new phase in terms of simply 

called Landau expansion. Expansion of the Taylor series, see people are all very perplexed for 

many years, decades. Nobody wrote down such a simple expansion, but Landau wrote down. 

That is what actually probably the simplicity or whatever, he is a genius. 

 

So he expands. So when you expand like that, then  is the order parameter. So I am expanding 

free energy in the order parameter. In the old phase order parameter is 0, so F = F0. Now my aim 

is to find a solution of the free energy in terms when the eta is non-zero okay. So this is the 

search of a solution. What are the conditions? Then where did the answer lies? The answer lies, 

as I said, answer lies in this branch. 

 

And why are this branch are going to all these quantities, , A, B, C, all of them are temperature 

dependent. This is explicitly put out for reasons I will describe a little later. All of them are 

temperature dependent. Now what are these quantities? How do I get , A, B, C? Exactly, you 

take the derivatives, so that is the characteristic I was saying. We need the derivatives and once 

you try to find the derivatives, you go a little deeper. 

 

You find the derivatives are in fact not only just specific heat or compressibility, but they are 

also giving a little higher level theory intermolecular correlations in the old phase, which we are 



not going to go. So this is the famous Landau expansion. There are many other terms there. 

When you put the gradients here, delta, eta from that becomes against what Landau and that is 

one of theory of superconductivity people use or superfluidity. 

 

Ginzburg got the Nobel prize later for this and many other things. So now, we start playing some 

game. So these are first important things that are determined by the derivatives of the free energy 

in the old phase. So these are determined by the old phase and we are trying to by Taylor 

expansion just like we do, how do we do a Taylor expansion? We always do Taylor expansion 

by going from known to unknown; that is the Taylor expansion, right interpolation, 

extrapolation. 
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So we use Taylor expansion always like we do f(x+a). We do a Taylor expansion f(x) plus then 

first derivative, but evaluated at x = a. So whole idea is that of going from known to unknown 

and known, we know. We are entitled to know everything about the old phase and then you are 

trying to do new. Now first thing is that, because this is a free energy minima, because this is a 

minima here in the liquid phase, this is 0. So now it becomes simpler that the free energy is one 

term less. Next, very importantly one quantity is done. 
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Now I make a distinction between first and second order phase transition and this is very 

important. So I will now describe something else that is coming here, but coming at a later stage, 

so I better do it here. This is extremely important thing and essence important part of the Landau 

theory okay. 
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So in a first order phase transition, free energy surface behaves like that against order parameter, 

free energy and I am lowering temperature towards the transition. So this is the old, my parent 

phase. This is the daughter phase, parent-daughter. Now parent and daughter become stable. 

Now what is in my pressure-density? What is this point? Exactly, this is the coexistence point. 

So this is the metastable characteristics of first order phase transition. 



 

There is always a metastable phase. One of the major characteristics and what is the 

manifestation of the metastability? We see it all the time. What is the most important 

manifestation or a signature of metastability? Hysteresis, you see in the presence of magnetic 

field, huge hysteresis that is because system remains trapped. Even when this is stable, system is 

trapped here. That is one of the reasons. 

 

Another reason, even at coexistence there is a large barrier in first order phase transition. What is 

the consequence of this large barrier in a first order phase transition, gas to liquid, liquid to solid, 

or nanomaterials forever, nucleation. You cannot spontaneously go over from one phase to other 

phase, because it is macroscopic barrier which is proportional to number of particles in the 

system. So it must be new phase, it must be nucleated okay. 

 

So two important characteristics of first order phase transition is a metastability, hysteresis, b it 

must have nucleation, because there is a macroscopic barrier. So the system must be, it is like 

winning a war. You must get into the fort okay. This is the first order phase transition. What 

happens is, so this is the Landau free energy surface for first order phase transition. What 

happened to Landau free energy surface for second order phase transition like the order-disorder 

transition, like superfluidity. 
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Now, this is very nice and this is what is the Landau theory gives you, a nice physical picture. 

This is low temperature. Now I am increasing temperature or you can say decrease temperature 

or whatever. We will see so uniquely different. I wish this time I really miss a big board. This T 

= Tc, this T is less than Tc, T near Tc and then T greater than Tc. Let me T greater than Tc, T 

greater than = Tc and T less than Tc. So they are the four diagrams. 

 

So there is no metastability in a second order phase transition. There is no nucleation. So as I go 

to the transition point the systems, remember I told in the response function, second derivative 

are the springs that hold the system together. Here this spring is compressibility or susceptibility 

or the specific heat and that spring slowly goes away. That is why you have infinitely 

compressible at critical point and the free energy surface becomes really broad and shallow in 

the minima. 

 

And this is where things are diverging and just little below that you get this spontaneous 

symmetry breaking of the system. So this is Landau, he provides this free energy landscape. The 

free energy provided this beautiful picture, how a first order phase transition happens and then 

second order phase transition happens. This is how first order what is shown here is first order. 

What I have drawn there is first order and there is a huge change in going from melting is a case 

where there is no second order phase transition and there is a beautiful logic again. 
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Landau logic that in a gas-liquid; however, there is a second order phase transition. This 

becomes narrow. You remember the isotherm, then this is the critical point, inflection point, this 

is Tc and so as you approach that then free energy surface, even in the minima start become 

flatter and then the whole second minima completely disappears and you get this. So this is the 

one that is shown there is the first order phase transition with metastability and then I will do the 

Landau theory in a minute. 
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And this is the flat and then this is the spontaneous symmetry breaking in a second order phase 

transition. So let us do the Landau theory quickly and so knowing that free energy surfaces are 

very different Landau trivially now into he said okay. First thing, I again mentioned that is an 

order parameter. That is why order parameters will be introduced, so that I can expend a free 

energy. Order parameter is the change and you know the free energy expansion is done in Taylor 

expansion. 

 

I have to change. So in f(x+a) our Taylor expansion, a is the order parameter. You are expanding 

around that and so order parameter is the smallness parameter. That is number one. Second one, 

now we going to do the second order phase, if we do first order phase transition, then these 

quantity B is non-zero and if B is non-zero I can make B negative and by making B negative, I 

described these transition and that is exactly the way Landau Dijan theory of liquid crystal was 

done. 



 

de Gennes was given well place for 2 work. One is liquid-crystal, another is polymer, three a 

semiconductor also. In these two, liquid-crystal and that; he did the landau theory. So is it 

beautifully one can describe and it turns out I can do the calculations of B and in first order phase 

transition, they are negative. 
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What is an example? Let us do van Der Waals gas and we take again and again. So this is the van 

Der Waals gas, our famous van Der Waals and then this is free energy. From integrating this one, 

you get the free energy and I can plot the free energy landscape from Van Der Waals. 
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I can also do expand free energy in a Taylor expansion. van Der Waals gives you exactly these, 

what we discussed the other day virials. These are virial series. Beauty is that the second 

coefficient is this thing. Now free energy is derivative of, go over you get a key term, cubic term, 

you integrate that, get the free energy. These term becomes negative at a low temperature 

simulating the phase transition first order restoration. 

 

And the cubic term goes to even small near the gas liquid critical point that does not fully 

describe this theory, but Landau theory is essentially Van Der Waals theory. These are called 

mean field theory in the sense that I am neglecting fluctuations. I am using a simply Taylor 

expansion to describe. If I integrate that rho square, rho cube that comes in. So van Der Waals 

free energy is exactly Landau free energy, except I now have some little bit of ideas where B2 

B3 are there. It already has that. Now the strength of Landau theory is in providing a description 

of the second order in a trivial way. 

(Refer Slide Time: 16:36) 

 

Now second order phase transition here there is a symmetry. The symmetry is that free energy is 

invariant. If it is 0, this is plus, this is minus. This is same. This is called the degeneracy. So if it 

is so, again this free energy, the condition often called the parity a symmetric condition and then 

this becomes simple like that, this is very famous. Particle physics theories many, many theories 

you know, Wilson himself did it. 

 



It has a huge impact on the enormous field of field theory in this landau thing, that the 0 and in 

so many differentiation all polymer is. I told you liquid-crystal everything is done in this 

language. This is more I like to tell that this actually gives you the language of the phase 

transition. That teaches you how to think about this phase transition. How to think of free energy 

change and order parameter? So this is now simplifies and now Landau made this brilliant thing. 

 

He said okay A is strongly temperature-dependent. I assume A(T). This is the not free energy 

series constant A and this is a universal language of Landau theory. This kind of expansion is the 

absolutely standard. Now you get, so I make this. Why do I do that?  I did it because when T 

goes to Tc, so this is this term then, this term is the one that is the spring. That is the frequency 

right and told you that is response function, this we know will be specific heat. 

 

Actually 1 over specific heat, so this thing is going to be flat. So that is why he assumes that it 

goes to 0 as (T-Tc) and then I solve for eta with that condition, put this here. Now I go and find 

out these. Take a derivative, when I take the derivative I get  = 0 always driven a trivial 

solution because these phase always remains a trivial solution. This is minimum here, but in 

maximum the same condition also holds and then I solve that, I get this. 

 

So the order parameter, this is a remarkable prediction that order parameter has this non-classical 

dependence, that means even when, look at this beautiful thing. If (T-Tc) is 0.1, I go below 0.1. I 

am in this regime. I am going below the critical temperature. What is square root of 0.1? 0.33, 

right. I go to 0.01. What is square root of 0.01? 0.1. What does it mean? These kind of fractional 

exponent means he say huge dependence and this is the real hallmark of critical phenomena. 

 

These fractional exponents, these exponent is called alpha; this is the specific heat, no sorry this 

called beta, because it is in terms of order parameter and beta is the universally 0.3 or one-third 

close to. This is amazing, you do so many different systems, define the order parameter and 

consider the temperature dependent order parameter and you find the fractional exponent or 

almost always 0.3. 

 



That is why it captured the absolutely a of imagination of scientists across the discipline. This 

universality is the characteristics of critical phenomena and these are called critical exponents. 

Yes, no what do you have actually you have absolute here and there are lot of this exponent beta 

above and lower called beta and beta prime and there have been a lot of work on that and beta 

and beta prime are almost always the same. 

 

They might be slightly difficult, but very difficult do the experiments exactly very close to that, 

but experiments were known for a very long time. This is exactly exponent you find from van 

Der Waal's theory also. These are called the Landau theory, does not get correct exponent one-

third, but it captures the one of the essence that the eta is the change. So eta will be if I go below 

this, I come from here to here, then these will be the order parameter. So what I am saying is that 

by giving change is small amount the eta is going to change by a big amount okay. That is a 

singularity that we talked about N order parameter okay. 
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So there are all these different kind of order-disorder transition, isotropic-nematic is very closely 

second order and then gas-liquid is the thing. So going back to first order phase transition now 

like liquid-crystals or Van Der Waal describes the first order fairly well, that then B is not zero 

anymore. It is the V that changes the sign. Now what Dijan did in liquid-crystal transition in 

isotropic-nematic, he noticed that isotropic-nematic is nearly second order, though first order. 

 



So he kept Landau theory. He kept Landau this part and then he also kept the B term and it 

developed a theory. Again same spirit, same phonology nothing great, but he again captured 

described the liquid, isotropic-nematic phase transition in liquid crystals, which is given even 

here. I think this is what I wanted to tell, the Landau theory and the free energy landscape of 

Landau theory, then the critical exponents. 
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So there are some other critical exponents, which are I do not like to aid at, but the other critical 

exponents are the following, specific heat, alpha, beta, I might keep missing something wrong. 

This is beta, specific heat alpha, I should have had that, then order parameter is the beta and there 

is gamma, delta a series of critical exponents, which is compressibility. Compressibility goes as 

gamma, specific heat alpha. Alpha is typically 0.1, beta is typically 0.32, gamma is typically 1.8. 

 

Landau theory predicts this is half, Landau theory finite discontinuity here and this one landau 

theory predict 1. So Landau theory gives half, the value is wrong, but it does get the basic 

physics correct. So should I write it separately these CP CV or you can see these things CP  and 

 and these are the critical exponents,  and as I said they are universal. That means they 

are nearly the same across all the systems. 
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This is a good question, van Der Waals is a mean field, Ramakrishnan Yussouff is a mean field, 

Landau is a mean field all are the same at the end of the day. The reason is that, when I expand 

that these are the ones with guys working on phase transition right the day in and day out. Now 

in all these things. Now let us consider gas-liquid simple thing in a gas liquid near the critical 

point what happens? 

 

There are regions which are liquid like; there are regions next to it which are gas like, large-scale 

density fluctuations. You look at the density and now I look at the density as a fluctuations 

around the average density. In my critical * language, critical density is again universal in near 

0.3, the very interesting near 0.3. I take that out and look at fluctuations, then what do I see? I see 

there is a region like here where is my origin, I draw like that. 

 

There is a large value, then after that it becomes negative, then become large, then becomes 

negative. I find like that. So delta rho, this is liquid, this is gas, this is liquid like that; need not be 

periodic. There is not periodic, but they are. So what are these now? These are interfaces. what 

does interphase bring in bring in surface tension? It is an extra energy. Where is that in Landau 

theory? It is not. 

 

So Landau theory has to be supplemented by and lo and behold, you have one of the most 

powerful theory of the world, this is Ginzberg-Landau. So Landau, Van Der Waals does not have 



this extra term, which is we call effect of fluctuations. So mean field theory does not have the 

effect of fluctuations, you have to go to Ginzberg-Landau to do that. That we all do, when you 

do surface tension. In my book, we have dealt with it at length. 

 

Surface phenomena, nucleation, these are one of the main topics in my book, which are not dealt 

either in physics or in chemistry books. No, you do not have the coexistence. You have a point. 

See coexistence is a line. So as I drew there that line collides, it becomes a point, point of 

singularity here. This is where large fluctuations are going on, gas-like and liquid-like. In a 

magnetic phase transitions, you have the up spin and down spin and ordered and disordered. 

 

That means one place is ordered followed by a disordered region. So then the order goes away 

and it becomes fully disordered. So this is a flat free energy interface. There are inside it, gas-like 

and liquid-like, but those are microscopic or mesoscopic domain. They are essential ingredient 

for the large scale fluctuations. We call the exact language these large scale fluctuations, but 

those large scale fluctuations are affecting the thermodynamic properties, but there is no 

macroscopic interface. 

 

This is a very important question that you asked and the very essence of a critical phenomena 

and so I go over, take care of those fluctuations in this term and then get a huge amount of 

difficulty that comes in, cannot be solved and that is what comes an important way how to go to 

next step and that first thing was done by Kadanoff; he introduced how the length scale diverges. 

That is called Kadanoff transformation. 

 

There is a beautiful book by Shang‐keng Ma Dynamical innovation book, Dynamics of Critical 

Phenomena. He described the beautifully kind of and there is a wonderful review article for high 

school students essentially, but first year PhD students called Mattice and Kadanoff Physics 

Today 1979 or 78, wonderful that is the best of critical phenomena that I know of. Kadanoff and 

Mattice or Mattice and Kadanoff, both were at Brown and they wrote together and we got the 

print. 

 



Everything was done in one dimension which is done in that particular article or almost into in 

my book, the critical phenomena. So doing that was dance step by step. Kadanoff did the 

Kadanoff transformation says how to treat the emerging correlations, long length correlations 

that happens, things become correlated over long, because the fluctuations become correlated 

that because here if I have a liquid-like region, then I has to have a gas-like region. 

 

This is called fluctuations getting correlated, then one of the most powerful theory of modern 

times KD Wilson in 1970 or 71 did the innovation, which is lot of fun with that. I did that once. I 

was happy to, I was very lucky in Chicago to work with one guy called Yoshi Ono, we did the 

donation group calculations of polymers, but it was the amazing theory. 


